若雙曲線-y2=1的一個焦點為(2,0),則它的離心率為________.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


已知橢圓C的方程為=1(a>b>0),雙曲線=1的兩條漸近線為l1、l2,過橢圓C的右焦點F作直線l,使l⊥l1.又l與l2交于P點,設(shè)l與橢圓C的兩個交點由上至下依次為A、B(如圖).

(1) 當(dāng)l1與l2夾角為60°,雙曲線的焦距為4時,求橢圓C的方程;

(2) 當(dāng)=λ,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


 已知橢圓C:=1(a>b>0)的離心率為,F(xiàn)為橢圓的右焦點,M、N兩點在橢圓C上,且 (λ>0),定點A(-4,0).

(1) 求證:當(dāng)λ=1時,;

(2) 若當(dāng)λ=1時,有,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知曲線C:(5-m)x2+(m-2)y2=8(m∈R).

(1) 若曲線C是焦點在x軸上的橢圓,求m的取值范圍;

(2) 設(shè)m=4,曲線C與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線C交于不同的兩點M,N,直線y=1與直線BM交于點G.求證:A,G,N三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


 已知橢圓C:=1(a>b>0)經(jīng)過點M(-2,-1),離心率為.過點M作傾斜角互補的兩條直線分別與橢圓C交于異于M的另外兩點P、Q.

(1) 求橢圓C的方程;

(2) 試判斷直線PQ的斜率是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知雙曲線的焦點在x軸上,兩個頂點間的距離為2,焦點到漸近線的距離為.

(1) 求雙曲線的標(biāo)準(zhǔn)方程;

(2) 寫出雙曲線的實軸長、虛軸長、焦點坐標(biāo)、離心率、漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


 已知雙曲線=1的右焦點為(3,0),則該雙曲線的離心率為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)數(shù)列滿足a1=0且= 1.

(1) 求的通項公式;

(2) 設(shè)bn,記Snbk,證明:Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


用數(shù)學(xué)歸納法證明1++…+<n,其中n>1且n∈N*,在驗證n=2時,式子的左邊等于________.

查看答案和解析>>

同步練習(xí)冊答案