設(shè)橢圓+=1(a>b>0)的左焦點為F,離心率為,過點F且與x軸垂直的直線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)設(shè)A,B分別為橢圓的左、右頂點,過點F且斜率為k的直線 與橢圓交于C,D兩點.若+=8,求k的值.
(1)設(shè)F(-c,0),由=,知a=c.過點F且與x軸垂直的直線為x=-c,
代入橢圓方程+=1,解得y=±b,
于是b= ,解得b=,
又a2-c2=b2,從而可得a=,c=1,
所以橢圓的方程為+=1.
(2)設(shè)點C(x1,y1),D(x2,y2),
由F(-1,0)得直線CD的方程為y=k(x+1),
由方程組消去y,
整理得(2+3k2)x2+6k2x+3k2-6=0.
因為直線過橢圓內(nèi)的點,無論k為何值,直線和橢圓總相交.
由根與系數(shù)的關(guān)系可得
則x1+x2=-,x1x2=,
因為A(-,0),B(,0),所以
=(x1+,y1)·(-x2,-y2)+(x2+,y2)·(-x1,-y1)
=6-2x1x2-2y1y2=6-2x1x2-2k2(x1+1)(x2+1)
=6-(2+2k2)x1x2-2k2(x1+x2)-2k2
=6+.
由已知得6+=8,
解得k=±.
科目:高中數(shù)學(xué) 來源: 題型:
當0<k<時,直線l1:kx-y=k-1與直線l2:ky-x=2k的交點在( ).
A.第一象限 B.第二象限
C.第三象限 D.第四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知兩圓x2+y2-2x-6y-1=0和x2+y2-10x-12y+m=0.
(1)m取何值時兩圓外切?
(2)m取何值時兩圓內(nèi)切?
(3)求m=45時兩圓的公共弦所在直線的方程和公共弦的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知點P(x0,y0),圓O:x2+y2=r2(r>0),直線l:x0x+y0y=r2,有以下幾個結(jié)論:①若點P在圓O上,則直線l與圓O相切;②若點P在圓O外,則直線l與圓O相離;③若點P在圓O內(nèi),則直線l與圓O相交;④無論點P在何處,直線l與圓O恒相切,其中正確的個數(shù)是( ).
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知F1、F2是橢圓的兩個焦點,P為橢圓上一點,∠F1PF2=60°.
(1)求橢圓離心率的范圍;
(2)求證:△F1PF2的面積只與橢圓的短軸長有關(guān).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
一個橢圓中心在原點,焦點F1,F2在x軸上,P(2,)是橢圓上一點,且|PF1|,|F1F2|,|PF2|成等差數(shù)列,則橢圓方程為( ).
A.+=1 B.+=1 C.+=1 D.+=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓:+=1(0<b<2),左、右焦點分別為F1,F2,過F1的直線l交橢圓于A,B兩點,若|BF2|+|AF2|的最大值為5,則b的值是( ).
A.1 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)F1,F2是雙曲線x2-=1的兩個焦點,P是雙曲線上的一點,且3|PF1|=4|PF2|,則△PF1F2的面積等于( ).
A.4 B.8 C.24 D.48
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,動圓C1:x2+y2=t2,1<t<3,與橢圓C2:+y2=1
相交于A,B,C,D四點,點A1,A2分別為C2的左,右頂點.
(1)當t為何值時,矩形ABCD的面積取得最大值?并求出其最大面積.
(2)求直線AA1與直線A2B交點M的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com