已知圓C的圓心是拋物線y=x2的焦點(diǎn).直線4x-3y-3=0與圓C相交于A,B兩點(diǎn),且|AB|=8,則圓C的方程為________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{an}、{bn}分別是首項(xiàng)均為2,各項(xiàng)均為正數(shù)的等比數(shù)列和等差數(shù)列,且b2=4a2,a2b3=6.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)求使abn<0.001成立的最小的n值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知直線l:kx-y+1+2k=0(k∈R).
(1)證明:直線l過定點(diǎn);
(2)若直線不經(jīng)過第四象限,求k的取值范圍;
(3)若直線l交x軸負(fù)半軸于A,交y軸正半軸于B,△AOB的面積為S,求S的最小值并求此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知點(diǎn)A(1,-1),B(-1,1),則以線段AB為直徑的圓的方程是( )
A.x2+y2=2 B.x2+y2=
C.x2+y2=1 D.x2+y2=4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
直線ax+by=1過點(diǎn)A(b,a),則以坐標(biāo)原點(diǎn)O為圓心,OA長為半徑的圓的面積的最小值是________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若直線y=x+b與曲線y=3-有公共點(diǎn),則b的取值范圍是( )
A.[-1,1+2] B.[1-2,1+2]
C.[1-2,3] D.[1-2,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
自點(diǎn)A(-3,3)發(fā)出的光線l射到x軸上,被x軸反射,其反射光線所在直線與圓x2+y2-4x-4y+7=0相切,求光線l所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)F1、F2分別是橢圓+y2=1的左、右焦點(diǎn).
(1)若P是第一象限內(nèi)該橢圓上的一點(diǎn),且=-,求點(diǎn)P的坐標(biāo);
(2)設(shè)過定點(diǎn)M(0,2)的直線l與橢圓交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知?jiǎng)訄AP過定點(diǎn)F(0,-),且與直線l相切,橢圓N的對稱軸為坐標(biāo)軸,一個(gè)焦點(diǎn)是F,點(diǎn)A(1,)在橢圓N上.
(1)求動(dòng)圓圓心P的軌跡M的方程和橢圓N的方程;
(2)已知與軌跡M在x=-4處的切線平行的直線與橢圓N交于B、C兩點(diǎn),試探求使△ABC面積等于的直線l是否存在?若存在,請求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com