一組數(shù)據(jù)中每個數(shù)據(jù)都減去50構(gòu)成一組新數(shù)據(jù),則這組新數(shù)據(jù)的平均數(shù)是1.2,方差是4.4,則原來一組數(shù)的方差為( 。
A、3.2B、4.4
C、4.8D、5.6
考點:極差、方差與標(biāo)準(zhǔn)差
專題:概率與統(tǒng)計
分析:設(shè)出原來一組數(shù)據(jù),根據(jù)求平均數(shù)的方法寫出新數(shù)據(jù)的平均數(shù),整理得到原來數(shù)據(jù)的平均數(shù),根據(jù)一組數(shù)據(jù)都減去同一個數(shù),不改變這組數(shù)據(jù)的波動大小,故方差不變.
解答: 解:設(shè)樣本x1,x2,…,xn的平均數(shù)是
.
x
,其方差是4.4,
有S2=
1
n
[(x1-
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2=4.4,
則樣本x1+50,x2+50,…,xn+50的平均數(shù)
.
x
+50,故其方差是S2=4.4.
∴前后兩組數(shù)據(jù)波動情況一樣,
故選B.
點評:本題考查平均數(shù)和方差的變換特點,若在原來數(shù)據(jù)前加上或者乘以同一個數(shù),平均數(shù)也加上或者乘以同一個數(shù),而方差要乘以這個數(shù)的平方,在數(shù)據(jù)上同加或減同一個數(shù),方差不變.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)fn(x)=x3-nx-1(x>0),n∈N*
(Ⅰ)求函數(shù)f3(x)的極值;
(Ⅱ)判斷函數(shù)fn(x)在區(qū)間(
n
,
n+1
)
上零點的個數(shù),并給予證明;
(Ⅲ)閱讀右邊的程序框圖,請結(jié)合試題背景簡要描述其算法功能,并求出執(zhí)行框圖所表達(dá)的算法后輸出的n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面向量
a
=(
3
,1),
b
=(-2
3
,2)
,則
a
b
的夾角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項均為正數(shù),數(shù)列{bn},{cn}滿足bn=
an+2
an
,cn=anan+12
(1)若數(shù)列{an}為等比數(shù)列,求證:數(shù)列{cn}為等比數(shù)列;
(2)若數(shù)列{cn}為等比數(shù)列,且bn+1≥bn,求證:數(shù)列{an}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點A、B的極坐標(biāo)分別為(1 , 
π
3
)
、(3 , 
3
)
,曲線C的參數(shù)方程為
x=rcosα
y=rsinα
為參數(shù)).
(Ⅰ)求直線AB的直角坐標(biāo)方程;
(Ⅱ)若直線AB和曲線C只有一個交點,求r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x+2)4展開式中含x2項的系數(shù)等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣M=
10
11
,則矩陣M的逆矩陣M-1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校餐廳每天供應(yīng)500名學(xué)生用餐,每星期一有A、B兩種菜可供選擇.調(diào)查表明,凡是在這星期一選A菜的,下星期一會有20%改選B菜;而選B菜的,下星期一會有30%改選A菜.用an表示第n個星期一選A的人數(shù),如果a1=428,則a6的值為(  )
A、301B、304
C、306D、308

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前n項和,且對任意n∈N*時,點(an,Sn)都在函數(shù)f(x)=-
1
2
x+
1
2
的圖象上.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=lg(1-2Sn)+2,求數(shù)列{bn}的前n項和Tn的最大值.

查看答案和解析>>

同步練習(xí)冊答案