數(shù)列{an}的通項公式為an=4n-1,則bk=
1
k
(a1+a2+…+ak)(k∈N*)所確定的數(shù)列{bn}的前n項和為(  )
A、n2
B、n(n+1)
C、n(n+2)
D、n(2n+1)
考點:數(shù)列的求和,等差數(shù)列的前n項和
專題:計算題,等差數(shù)列與等比數(shù)列
分析:由an=4n-1,可知數(shù)列{an}為等差數(shù)列,從而可求得a1+a2+…+an,繼而可求得bn與數(shù)列{bn}的前n項和.
解答: 解:∵an=4n-1,
∴數(shù)列{an}是首項為3,公差為4的等差數(shù)列,設(shè)其前n項和為Sn,則Sn=a1+a2+…+an=n(2n+1)
∴bk=
1
k
(a1+a2+…+ak)=2k+1
∴{bn}為首項是3,公差為2的等差數(shù)列,
∴數(shù)列{bn}的前n項和為
(3+2n+1)•n
2
=n2+2n.
故選:C.
點評:本題考查等差數(shù)列的前n項和,求得bn也是等差數(shù)列是關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知兩定點A(-2,0),B(2,0),若直線上存在點P,使得|PA|-|PB|=2,則稱該直線為“優(yōu)美直線”,給出下列直線:①y=x+1②y=
3
x+2③y=-x+3④y=-2x-1.其中是“優(yōu)美直線”的序號是( 。
A、①④B、③④C、②③D、①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=cosx(-
π
2
≤x≤
π
2
)與兩坐標(biāo)軸所圍成的圖形的面積為( 。
A、4
B、2
C、
5
2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2x-1
lnx
的定義域為( 。
A、(0,+∞)
B、(0,1)∪(1,+∞)
C、(0,1)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是等比數(shù)列{an}的前n項和,如果a3+a6=2,a4a5=-8,且a3<a6,則
S9
S6
=( 。
A、4B、3C、-3D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x-1)的圖象關(guān)于(1,0)對稱,且當(dāng)x∈(-∞,0)時,f(x)+xf′(x)<0(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a=(30.3)•f(30.3),b=(ln2)•f(ln2),c=(log 
1
2
4)•f(log 
1
2
4),則a,b,c的大小關(guān)系是( 。
A、a>b>c
B、a>c>b
C、c>b>a
D、c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x+
λ
x
,其中常數(shù)λ>0.
(1)判斷函數(shù)的奇偶性;
(2)若λ=1,判斷f(x)在區(qū)間[1,+∞)上的單調(diào)性,并用定義加以證明;
(3)是否存在正的常數(shù)λ,使f(x)在區(qū)間(0,+∞)上單調(diào)遞增?若存在,求λ的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l經(jīng)過拋物線x2=4y的焦點,且與拋物線交于A、B兩點,點O為坐標(biāo)原點.
(1)證明:
OA
OB
=-3;
(2)若△AOB的面積為4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3(a-3x)+x-2,若f(x)存在零點,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案