曲線y=cosx(-
π
2
≤x≤
π
2
)與兩坐標軸所圍成的圖形的面積為( 。
A、4
B、2
C、
5
2
D、3
考點:定積分在求面積中的應用
專題:導數(shù)的概念及應用
分析:根據(jù)積分的幾何意義,即可求出曲線圍成的面積.
解答: 解:曲線y=cosx(-
π
2
≤x≤
π
2
)的圖象如下,
曲線y=cosx(-
π
2
≤x≤
π
2
)與兩坐標軸所圍成的圖形的面積S=
π
2
-
π
2
cosxdx=sinx
|
π
2
-
π
2
=sin
π
2
-sin(-
π
2
)=2.
故選:B.
點評:本題主要考查積分的應用,利用積分即可求出曲線面積,注意要對函數(shù)進行分段求值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)、g(x)的定義域分別為F、G,且F是G的真子集,若對任意的x∈F,都有g(x)=f(x),則稱g(x)為f(x)在G上的一個“延拓函數(shù)”,已知函數(shù)f(x)=(
1
2
x(x≤0),若g(x)為f(x)在R上的一個延拓函數(shù),且g(x)是偶函數(shù),則函數(shù)g(x)的解析式為(  )
A、g(x)=(
1
2
|x|
B、g(x)=2|x|
C、g(x)=log2|x|
D、g(x)=log 
1
2
|x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2
1
1
x
+
1
x2
)dx=( 。
A、
1
2
B、
1
2
+1n2
1
2
C、-
1
2
+1n2
D、
1
4
+1n2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在函數(shù)y=cosx(x∈[-
π
2
,
π
2
])的圖象與x軸所圍成的圖形中,直線l:x=t(t∈[-
π
2
,
π
2
])從點A向右平行移動至B,l在移動過程中掃過平面圖形(圖中陰影部分)的面積為S,則S關于t的函數(shù)S=f(t)的圖象可表示為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

問題:有1000個乒乓球分別裝在3個箱子里,其中紅色箱子內(nèi)有500個,藍色箱子內(nèi)有200個,黃色箱子內(nèi)有300個,現(xiàn)從中抽取一個容量為100的樣本:方法Ⅰ:隨機抽樣法Ⅱ:系統(tǒng)抽樣法Ⅲ:分層抽樣法.其中問題與方法能配對的是(  )
A、ⅠB、ⅡC、ⅢD、Ⅱ或Ⅲ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓C1:(x-3)2+(y+1)2=4關于直線x-y=0對稱的圓C2的方程為:(  )
A、(x+3)2+(y-1)2=4
B、(x+1)2+(y-3)2=4
C、(x-1)2+(y+3)2=4
D、(x-3)2+(y+1)2=4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|y=lnx-2012},集合B={-2,-1,1,2},則A∩B=( 。
A、φ
B、{1,2}
C、{-1,-2}
D、{-2,-1,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的通項公式為an=4n-1,則bk=
1
k
(a1+a2+…+ak)(k∈N*)所確定的數(shù)列{bn}的前n項和為( 。
A、n2
B、n(n+1)
C、n(n+2)
D、n(2n+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等比數(shù)列{an}的前n項和為Sn,已知a1=
1
3
,且S1,2S2,3S3成等差數(shù)列.
(1)求an;
(2)設bn=
n
an
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案