已知等差數(shù)列{an}的首項a1=1,公差d>0,且第二項、第五項、第十四項成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
1
n(an+3)
 (n∈N*),求數(shù)列{bn}的前n項和Sn
(3)在第(2)問的前提下,是否存在最大的整數(shù)t,使得對任意的n均有Sn
t
36
總成立?若存在,求出t;若不存在,請說明理由.
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:(1)利用等差數(shù)列的通項公式將第二項,第五項,第十四項用{an}的首項與公差表示,再據(jù)此三項成等比數(shù)列,列出方程,求出公差,利用等差數(shù)列求出數(shù)列{an}的通項公式;
(2)利用裂項法求和,可得結(jié)論;
(3)Sn
t
36
,即
n
2n+2
t
36
,可求最大的整數(shù)t.
解答: 解:(1)∵a2=1+d,a5=1+4d,a14=1+13d
∴(1+4d)2=(1+d)(1+13d)
∵d>0
∴d=2
∴an=1+2(n-1)=2n-1;
(2)bn=
1
n(an+3)
=
1
2
1
n
-
1
n+1
),
∴Sn=
1
2
(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)=
1
2
(1-
1
n+1
)=
n
2n+2

(3)Sn
t
36
,即
n
2n+2
t
36

1
2
t
36
,
∴t≤18,
∴最大的整數(shù)t為18.
點評:本題主要考查了利用基本量表示等差數(shù)列、等比數(shù)列的通項,考查裂項法,難度中等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)Z=
4+3i
1+2i
(i為虛數(shù)單位),求Z及|Z|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a2=3,a4=7.
(1)求{an}的通項公式;
(2)求{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M(-1,m),N(2,n)是二次函數(shù)f(x)=ax2(a>0)圖象上兩點,且MN=3
2

(1)求a的值;
(2)求f(x)的圖象在N點處切線的方程;
(3)設(shè)直線x=t與f(x)和曲線y=lnx的圖象分別交于點P、Q,求PQ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求直線y=x+1被雙曲線x2-
y2
4
=1截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足(1+2i)•z為實數(shù)(i為虛數(shù)單位),且|z|=
5
,求z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
3
=1(a>
10
)的右焦點F在圓D:(x-2)2+y2=1上,直線l:x=my+3(m≠0)交橢圓于M,N兩點.
(1)求橢圓C的方程;
(2)若OM⊥ON(O為坐標原點),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C的對邊分別為a,b,c,且
3
(a-ccosB)=bsinC
(1)求角C;
(2)若△ABC的面積S=
3
3
,a+b=4,求sinAsinB及cosAcosB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1-tan1°)(1+tan46°)=
 

查看答案和解析>>

同步練習(xí)冊答案