【題目】已知曲線E上任一點(diǎn)P到直線l:x=4的距離是點(diǎn)P到點(diǎn)M(1,0)的距離的2倍.
(1)求曲線E的方程;
(2)過點(diǎn)A(2,0)作兩條互相垂直的直線分別交曲線E于B、D兩點(diǎn)(均異于點(diǎn)A),又C(-2,0),求四邊形ABCD的面積的最大值.
【答案】(1)(2)
【解析】
(1)設(shè),結(jié)合題意得到,化簡(jiǎn)即可求得曲線的方程;
(2)設(shè)的方程為,聯(lián)立方程組,利用根與系數(shù)的關(guān)系,求得,進(jìn)而得到,利用面積公式,求得四邊形的不等式,結(jié)合函數(shù)的單調(diào)性,即可求解.
(1)設(shè),
因?yàn)榍E上任一點(diǎn)P到直線l:x=4的距離是點(diǎn)P到點(diǎn)M(1,0)的距離的2倍,
即,兩邊平方并整理得
即曲線的方程為.
(2)由題意,可得直線的斜率存在且不為0,可設(shè)的方程為,
聯(lián)立方程組,整理得,
因?yàn)?/span>是其一個(gè)根,所以解得另一根即點(diǎn)的橫坐標(biāo)為,
因?yàn)?/span>,所以把換成得的橫坐標(biāo)為,
則、的縱坐標(biāo)之差為,
所以四邊形的面積
令,則,可得(),
又由函數(shù)在是增函數(shù),
所以可得當(dāng)時(shí)為單調(diào)遞減,所以時(shí),取得最大值,
此時(shí),解得,
所以四邊形的面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用一張長(zhǎng)為12,寬為8的鐵皮圍成圓柱形的側(cè)面,則這個(gè)圓柱的體積為_____;半徑為R的半圓形鐵皮卷成一個(gè)圓錐筒,那么這個(gè)圓錐筒的高是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中, , 平面,側(cè)面是正方形,點(diǎn)為棱的中點(diǎn),點(diǎn)、分別在棱、上,且, .
(1)證明:平面平面;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
若,,試證明:當(dāng)時(shí),;
若對(duì)任意,均有兩個(gè)極值點(diǎn),
試求b應(yīng)滿足的條件;
當(dāng)時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、分別是橢圓的左、右焦點(diǎn).
(1)若是該橢圓上的一個(gè)動(dòng)點(diǎn),求的最大值與最小值.
(2)是否存在過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),使得?若存在,求直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),,,數(shù)列的前項(xiàng)和,點(diǎn)()均在函數(shù)的圖像上.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),是數(shù)列的前項(xiàng)和,求滿足()的最大正整數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com