【題目】設,,,數(shù)列的前項和,點()均在函數(shù)的圖像上.
(1)求數(shù)列的通項公式;
(2)設,是數(shù)列的前項和,求滿足()的最大正整數(shù).
【答案】(1)an=6n-5 () (2)8
【解析】
(1)根據f(x)=3x2﹣2x,由(n,Sn)在y=3x2﹣2x上,知Sn=3n2﹣2n.由此能求出數(shù)列{an}的通項公式.
(2)由,知Tn(1-),根據()對恒成立,當且僅當,由此能求出所有n∈N*都成立的m的范圍.
(1)因為=3x2-2x.
又因為點 均在函數(shù)的圖像上,所以=3n2-2n.
當n≥2時,an=Sn-Sn-1=(3n2-2n)- =6n-5.
當n=1時,a1=S1=3×12-2=1,所以,an=6n-5 ().
(2)由(1)得知 = ,
故Tn= =
=(1-),且Tn隨著n的增大而增大
因此,要使(1-)()對恒成立,當且僅當n=1時T1=,
即m<9,所以滿足要求的最大正整數(shù)m為8.
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線E上任一點P到直線l:x=4的距離是點P到點M(1,0)的距離的2倍.
(1)求曲線E的方程;
(2)過點A(2,0)作兩條互相垂直的直線分別交曲線E于B、D兩點(均異于點A),又C(-2,0),求四邊形ABCD的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】假設平面點集具有性質:(1)任意三點不共線;(2)任意兩點距離各不相等.對于中兩點、,若存在點使得,則稱是的一條“中邊”;對于中三點、、,若、、都是的中邊,則稱是的“中邊三角形”.求最小的,使得任意具有性質(1)和(2)的元平面點集中必存在中邊三角形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在“數(shù)學發(fā)展史”知識測驗后,甲、乙、丙三人對成績進行預測:
甲說:我的成績比乙高;
乙說:丙的成績比我和甲的都高;
丙說:我的成績比乙高.
成績公布后,三人成績互不相同且只有一個人預測正確,那么三人中預測正確的是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分15分)
在等差數(shù)列{an}中,a1=1,公差d≠0,且a1,a2,a5是等比數(shù)列{bn}的前三項.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設cn=an·bn,求數(shù)列{cn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四棱錐S-ABCD中,底面ABCD為平行四邊形,側面底面ABCD,已知, 為正三角形.
(1)證明.
(2)若,,求二面角的大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個生產公司投資A生產線500萬元,每萬元可創(chuàng)造利潤萬元,該公司通過引進先進技術,在生產線A投資減少了x萬元,且每萬元的利潤提高了;若將少用的x萬元全部投入B生產線,每萬元創(chuàng)造的利潤為萬元,其中.
若技術改進后A生產線的利潤不低于原來A生產線的利潤,求x的取值范圍;
若生產線B的利潤始終不高于技術改進后生產線A的利潤,求a的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年4月,河北、遼寧、江蘇、福建、湖北、湖南、廣東、重慶等8省市發(fā)布高考綜合改革實施方案,決定從2018年秋季入學的高中一年級學生開始實施“”高考模式.所謂“”,即“3”是指考生必選語文、數(shù)學、外語這三科;“1”是指考生在物理、歷史兩科中任選一科;“2”是指考生在生物、化學、思想政治、地理四科中任選兩科.
(1)若某考生按照“”模式隨機選科,求選出的六科中含有“語文,數(shù)學,外語,物理,化學”的概率.
(2)新冠疫情期間,為積極應對“”新高考改革,某地高一年級積極開展線上教學活動.教育部門為了解線上教學效果,從當?shù)夭煌瑢哟蔚膶W校中抽取高一學生2500名參加語數(shù)外的網絡測試,并給前400名頒發(fā)榮譽證書,假設該次網絡測試成績服從正態(tài)分布,且滿分為450分.
①考生甲得知他的成績?yōu)?/span>270分,考試后不久了解到如下情況:“此次測試平均成績?yōu)?/span>171分,351分以上共有57人”,請用你所學的統(tǒng)計知識估計甲能否獲得榮譽證書,并說明理由;
②考生丙得知他的實際成績?yōu)?/span>430分,而考生乙告訴考生丙:“這次測試平均成績?yōu)?/span>201分,351分以上共有57人”,請結合統(tǒng)計學知識幫助丙同學辨別乙同學信息的真?zhèn),并說明理由.
附:;
;
.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com