如果cosα=
1
3
,且α是第四象限的角,那么cos(α+
2
)=
 
考點:運用誘導公式化簡求值
專題:三角函數(shù)的求值
分析:由cosα的值及α為第四象限角,利用同角三角函數(shù)間的基本關系求出sinα的值,原式利用誘導公式化簡,將sinα的值代入計算即可求出值.
解答: 解:∵cosα=
1
3
,且α是第四象限的角,
∴sinα=-
1-cos2α
=-
2
2
3
,
則cos(α+
2
)=sinα=-
2
2
3

故答案為:-
2
2
3
點評:此題考查了運用誘導公式化簡求值,熟練掌握誘導公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x-a)2e 
x
a
,其導函數(shù)y=f′(x)的圖象經(jīng)過點(-3,0),(3,0),如圖所示.
(Ⅰ)求f(x)的極大值點;
(Ⅱ)求a的值;
(Ⅲ)若m≥0,求f(x)在區(qū)間[m,m+1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,以Ox軸為始邊作兩個銳角α、β,它們的終邊分別與單位圓相交于A、B兩點.已知A、B的橫坐標分別為
2
10
,
2
5
5

(1)求tan(α+β)的值;
(2)求
sin2α+sin2α
6cos2α+cos2α
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若sin(
π
4
-α)=-
1
2
,sin(
π
4
+β)=
3
2
,其中
π
4
<α<
π
2
π
4
<β<
π
2
,求角(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從1=12,1+3=22,1+3+5=32,1+3+5+7=42中,可得一般規(guī)律為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的方程|x2-1|=x+k有三個不同的實數(shù)解,則實數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(
1
3
x-log2x,實數(shù)a、b、c滿足f(a)•f(b)•f(c)<0(0<a<b<c),若實數(shù)x0是方程f(x)=0的一個解,那么下列結(jié)論:①x0<a,②x0>b,③x0<c,④x0>c,其中,不可能成立的結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=
1
1-
1
1-
1
|x|-x
的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

半徑為2的半圓卷成一個圓錐,則它的體積為
 

查看答案和解析>>

同步練習冊答案