若sin(
π
4
-α)=-
1
2
,sin(
π
4
+β)=
3
2
,其中
π
4
<α<
π
2
,
π
4
<β<
π
2
,求角(α+β)的值.
考點:兩角和與差的正弦函數(shù),同角三角函數(shù)間的基本關(guān)系
專題:計算題,三角函數(shù)的求值
分析:利用cos(α+β)=cos[(
π
4
+β)-(
π
4
-α)],即可求角(α+β)的值.
解答: 解:∵
π
4
<α<
π
2
,
∴-
π
4
π
4
-α<0,
π
4
<β<
π
2
,
π
2
π
4
+β<
4
…(3分)
由已知可得cos(
π
4
-α)=
3
2
,cos(
π
4
+β)=-
1
2

則cos(α+β)=cos[(
π
4
+β)-(
π
4
-α)]=cos(
π
4
+β)•cos(
π
4
-α)+sin(
π
4
+β)•sin(
π
4
-α)
=-
1
2
×
3
2
+
3
2
×(-
1
2
)=-
3
2
,…(9分)
π
2
<α+β<π,
∴α+β=
6
…(12分)
點評:本題考查兩角和與差的余弦函數(shù),考查同角三角函數(shù)間的基本關(guān)系,考查學生的計算能力,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1-ln(x+1),g(x)=ax2-x+1.
(1)求證:1-x≤f(x)≤
1
1+x

(2)當x≥0時,若f(x)≥g(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=alnx+
1
2
x2(∈R).
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若f(x)≥
1
2
x2+
1
2
x+m對任意的a∈(1,e],x∈(1,e]恒成立,求實數(shù)m的取值范圍;
(3)設(shè)a∈(1,e],g(x)=f(x)-(a+1)x,證明:對?x1,x2∈[1,a],恒有|g(x1)-g(x2)|<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=(
1
3
 x2-3x+2的單調(diào)區(qū)間及值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:集合M是滿足下列性質(zhì)的函數(shù)f(x)的全體:在定義域內(nèi)存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)函數(shù)f(x)=
1
x
是否屬于集合M?說明理由;
(2)設(shè)函數(shù)f(x)=lg
a
x2+1
∈M,求正實數(shù)a的取值范圍;
(3)證明:函數(shù)f(x)=2x+x2∈M.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法中正確的有
 
.(寫出所有正確命題的序號)
①存在銳角θ,使得sinθ+cosθ=
1
3
;
②y=cos(x-
π
4
)在區(qū)間[
3
,π]上是減函數(shù);
③函數(shù)f(x)=sin(2x+
π
3
)的圖象關(guān)于點(
π
4
,0)對稱;
④將函數(shù)f(x)=sin2x的圖象向左平移
π
4
個單位后對應的函數(shù)是一個偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果cosα=
1
3
,且α是第四象限的角,那么cos(α+
2
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關(guān)于函數(shù)y=4sin(2x+
π
3
)(x∈R),有下列命題:
①函數(shù)y=f(x)的圖象關(guān)于直線x=-
π
6
對稱;
②函數(shù)y=f(x)的圖象關(guān)于點(-
π
6
,0)對稱;
③函數(shù)y=f(x)在(
3
,π)上單調(diào)遞增;
④由f(x1)=f(x2)=0可得x1-x2必是π的整數(shù)倍.
其中正確的命題序號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=(
1
2
 (x2-4x)的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

同步練習冊答案