【題目】如圖,OA是⊙O的半徑,點(diǎn)E為圓內(nèi)一點(diǎn),且OA⊥OE,AB是⊙O的切線,EB交⊙O于點(diǎn)F,BQ⊥AF于點(diǎn)Q.
(1)如圖1,求證:OE∥AB;
(2)如圖2,若AB=AO,求的值;
(3)如圖3,連接OF,∠EOF的平分線交射線AF于點(diǎn)P,若OA=2,cos∠PAB=,求OP的長.
【答案】(1)證明見解析;(2);(3).
【解析】
(1)利用切線的性質(zhì)證得∠AOE+∠OAB=180°,利用同旁內(nèi)角互補(bǔ)兩直線平行證得OE∥AB;
(2)過O點(diǎn)作OC⊥AF于點(diǎn)C,證得△AOC≌△BAQ(AAS)后得到AC=BQ,進(jìn)一步得到AF=2AC=2BQ,從而求得兩條線段的比;
(3)過O點(diǎn)作OC⊥AF于點(diǎn)C,解直角三角形求得OC的長,然后證得△POC為等腰直角三角形,利用等腰三角形的性質(zhì)求得線段OP 的長即可.
解:(1)
∵OA⊥OE,
∴∠AOE=90°,
又∵AB是⊙O的切線,OA是⊙O的半徑,
∴OA⊥AB
∴∠OAB=90°,
∴∠AOE+∠OAB =180°,
∴OE∥AB.
(2)如圖2,過O點(diǎn)作OC⊥AF于點(diǎn)C,
∴AF=2AC, ∠OCA=90°,
∴∠AOC+∠OAC =90°,
又∵OA⊥AB,
∴∠OAC+∠CAB =90°,
∴∠AOC=∠CAB,
又∵BQ⊥AF,
∴∠AQB =90°,
∴∠ACO =∠AQB
又∵OA =AB,
∴△AOC≌△BAQ(AAS),
∴AC =BQ,
∴AF=2AC =2BQ,
即;
(3)如圖3:過O點(diǎn)作OC⊥AF于點(diǎn)C,
由(2)得∠AOC =∠PAB,
∴,
在Rt△AOC中, OA =2,
∴OC===,
又∵OA=OF,OC⊥AF于點(diǎn)C,
∴∠COF=∠AOF,
又∵OP平分∠EOF,
∴∠POF=∠EOF,
∴∠POC=∠COF+∠POF=∠AOF+∠EOF=∠EOA=45°,
∴△POC為等腰直角三角形
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在奉賢創(chuàng)建文明城區(qū)的活動(dòng)中,有兩段長度相等的彩色道磚鋪設(shè)任務(wù),分別交給甲、乙兩個(gè)施工隊(duì)同時(shí)進(jìn)行施工.如圖是反映所鋪設(shè)彩色道磚的長度y(米)與施工時(shí)間x(時(shí))之間關(guān)系的部分圖象.請(qǐng)解答下列問題:
(1)求乙隊(duì)在2≤x≤6的時(shí)段內(nèi),y與x之間的函數(shù)關(guān)系式;
(2)如果甲隊(duì)施工速度不變,乙隊(duì)在開挖6小時(shí)后,施工速度增加到12米/時(shí),結(jié)果兩隊(duì)同時(shí)完成了任務(wù).求甲隊(duì)從開始施工到完工所鋪設(shè)的彩色道磚的長度為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是邊長為2的正方形,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過A、E兩點(diǎn),且點(diǎn)E的坐標(biāo)為(﹣,0),以0C為直徑作半圓,圓心為D.
(1)求二次函數(shù)的解析式;
(2)求證:直線BE是⊙D的切線;
(3)若直線BE與拋物線的對(duì)稱軸交點(diǎn)為P,M是線段CB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)B,C不重合),過點(diǎn)M作MN∥BE交x軸與點(diǎn)N,連結(jié)PM,PN,設(shè)CM的長為t,△PMN的面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.S是否存在著最大值?若存在,求出最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題:
(1)這次統(tǒng)計(jì)共抽查了 名學(xué)生;在扇形統(tǒng)計(jì)圖中,表示“QQ”的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該校共有1500名學(xué)生,請(qǐng)估計(jì)該校最喜歡用“微信”進(jìn)行溝通的學(xué)生有多少名?
(4)某天甲、乙兩名同學(xué)都想從“微信”、“QQ”、“電話”三種溝通方式中選一種方式與對(duì)方聯(lián)系,請(qǐng)用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=6,E為AC邊上的點(diǎn)且AE=2EC,點(diǎn)D在BC邊上且滿足BD=DE,設(shè)BD=y,S△ABC=x,則y與x的函數(shù)關(guān)系式為( )
A.y=x2+B.y=x2+
C.y=x2+2D.y=x2+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸、y軸交于A、B兩點(diǎn),交反比例函數(shù)于C、D兩點(diǎn),DE⊥x軸于點(diǎn)E,已知C點(diǎn)的坐標(biāo)是(6,-1),DE=3.
(1)求反比例函數(shù)與一次函數(shù)的解析式
(2)根據(jù)圖象直接回答:當(dāng)x為何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值.
(3)求△OAD的面積S△OAD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,扇形OAB中,∠AOB=60°,扇形半徑為4,點(diǎn)C在上,CD⊥OA,垂足為點(diǎn)D,當(dāng)△OCD的面積最大時(shí),圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,菱形ABCD位于平面直角坐標(biāo)系中,拋物線y=ax2+bx+c經(jīng)過菱形的三個(gè)頂點(diǎn)A、B、C,已知A(﹣3,0)、B(0,﹣4).
(1)求拋物線解析式;
(2)線段BD上有一動(dòng)點(diǎn)E,過點(diǎn)E作y軸的平行線,交BC于點(diǎn)F,若S△BOD=4S△EBF,求點(diǎn)E的坐標(biāo);
(3)拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△BPD是以BD為斜邊的直角三角形?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把兩個(gè)全等的矩形ABCD和EFGH如圖1擺放(點(diǎn)D和點(diǎn)G重合,點(diǎn)C和點(diǎn)H重合),點(diǎn)A、D(G)在同一條直線上,AB=6cm,BC=8cm.如圖2,△ABC從圖1位置出發(fā),沿BC方向勻速運(yùn)動(dòng),速度為1cm/s,AC與GH交于點(diǎn)P;同時(shí),點(diǎn)Q從點(diǎn)E出發(fā),沿EF方向勻速運(yùn)動(dòng),速度為1cm/s.點(diǎn)Q停止運(yùn)動(dòng)時(shí),△ABC也停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<6).
(1)當(dāng)t為何值時(shí),CQ∥FH;
(2)過點(diǎn)Q作QM⊥FH于點(diǎn)N,交GF于點(diǎn)M,設(shè)五邊形GBCQM的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,是否存在某一時(shí)刻,使點(diǎn)M在線段PC的中垂線上?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com