【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是邊長(zhǎng)為2的正方形,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過(guò)A、E兩點(diǎn),且點(diǎn)E的坐標(biāo)為(﹣,0),以0C為直徑作半圓,圓心為D.
(1)求二次函數(shù)的解析式;
(2)求證:直線BE是⊙D的切線;
(3)若直線BE與拋物線的對(duì)稱軸交點(diǎn)為P,M是線段CB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)B,C不重合),過(guò)點(diǎn)M作MN∥BE交x軸與點(diǎn)N,連結(jié)PM,PN,設(shè)CM的長(zhǎng)為t,△PMN的面積為S,求S與t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍.S是否存在著最大值?若存在,求出最大值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)見(jiàn)解析;(3),S存在最大值,當(dāng)t=1時(shí),S最大=.
【解析】
(1)利用待定系數(shù)法,根據(jù)題意易得點(diǎn)A、B的坐標(biāo),然后把點(diǎn)A、B、E的坐標(biāo)分別代入二次函數(shù)解析式,列出關(guān)于a、b、c的方程組,利用三元一次方程組來(lái)求得系數(shù)的值;
(2)過(guò)點(diǎn)D作DG⊥BE于點(diǎn)G,構(gòu)建相似三角形△EGD∽△ECB,根據(jù)它的對(duì)應(yīng)邊成比例得DG的值,利用待定系數(shù)法求得直線BE的解析式,由此求得DG=1(圓的半徑是1),則易證得結(jié)論;
(3)由(2)中可求得點(diǎn)P的坐標(biāo),由相似三角形△MNC∽△BEC的對(duì)應(yīng)邊成比例,線段間的和差關(guān)系得到CN、DN的值,由題可得S=S△PND+S梯形PDCMS△MNC,再結(jié)合拋物線的性質(zhì)可求得S的最值.
解:(1)由題意,得A(0,2),點(diǎn)B(2,2),E的坐標(biāo)為(,0)
則,解得
故二次函數(shù)的解析式為:;
(2)如圖1,過(guò)點(diǎn)D作DG⊥BE于點(diǎn)G,
由題意,得
ED=,EC=,BC=2
∴BE=
∵∠BEC=∠DEG,∠EGD=∠ECB=90°
∴△EGD∽△ECB
∴,
∴DG=1
∵圓D的半徑為1,且DG⊥BE
∴BE是圓D的切線
(3)如圖2,過(guò)點(diǎn)M作MN∥BE交x軸與點(diǎn)N,連結(jié)PM,PN,
依題意,得,點(diǎn)B(2,2),E的坐標(biāo)為(,0),
故設(shè)直線BE為y=kx+h(k≠0)
則有,解得,
∴直線BE為:
∵直線BE與拋物線的對(duì)稱軸交點(diǎn)為P,對(duì)稱軸為x=1
∴點(diǎn)P的縱坐標(biāo)為y=,即P(1,)
∵MN∥BE
∴∠MNC=∠BEC
∵∠MCN=∠BCE=90°
∴△MNC∽△BEC
∴
∴,即,
∴,
∴S△PND=
S△MNC=
S梯形PDCM=
∴S=S△PND+S梯形PDCM﹣S△MNC=(0<t<2)
∵拋物線S=(0<t<2)的開(kāi)口方向向下
∴S存在最大值,當(dāng)t=1時(shí),S最大=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于的不等式組有且僅有三個(gè)整數(shù)解,且關(guān)于的分式方程的解為整數(shù),則符合條件的整數(shù)的個(gè)數(shù)是
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線F的解析式為:y=2x2﹣4nx+2n2+n,n為實(shí)數(shù).
(1)求拋物線F頂點(diǎn)的坐標(biāo)(用n表示),并證明:當(dāng)n變化時(shí)頂點(diǎn)在一條定直線l上;
(2)如圖,射線m是(1)中直線l與x軸正半軸夾角的平分線,點(diǎn)M,N都在射線m上,作MA⊥x軸、NB⊥x軸,垂足分別為點(diǎn)A、點(diǎn)B(點(diǎn)A在點(diǎn)B左側(cè)),當(dāng)MA+NB=MN時(shí),試判斷是否為定值,若是,請(qǐng)求出定值;若不是,說(shuō)明理由.
(3)已知直線y=kx+b與拋物線F中任意一條都相截,且截得的長(zhǎng)度都為,求這條直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠BAD,∠ABC=90°,AC=AD=2,M、N分別為AC、CD的中點(diǎn),連接BM、MN、BN.
(1)求證:BM=MA;
(2)若∠BAD=60°,求BN的長(zhǎng);
(3)當(dāng)∠BAD= °時(shí),BN=1.(直接填空)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,四邊形ABCD為矩形,點(diǎn)O是AC的中點(diǎn),過(guò)點(diǎn)O的一直線分別與AB、CD交于點(diǎn)E、F,連接BF交AC于點(diǎn)M,連接DE、BO,若∠COB=60°,FO=FC,則下列結(jié)論:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四邊形EBFD是菱形;④MB:OE=3:2,其中正確結(jié)論是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高學(xué)生的身體素質(zhì),某班級(jí)決定開(kāi)展球類(lèi)活動(dòng),要求每個(gè)學(xué)生必須在籃球、足球、排球、乒乓球、羽毛球中選擇一項(xiàng)參加訓(xùn)練(只選擇一項(xiàng)),根據(jù)學(xué)生的報(bào)名情況制成如下統(tǒng)計(jì)表:
項(xiàng)目 | 籃球 | 足球 | 排球 | 乒乓球 | 羽毛球 |
報(bào)名人數(shù) | 12 | 8 | 4 | a | 10 |
占總?cè)藬?shù)的百分比 | 24% | b |
(1)該班學(xué)生的總?cè)藬?shù)為 人;
(2)由表中的數(shù)據(jù)可知:a= ,b= ;
(3)報(bào)名參加排球訓(xùn)練的四個(gè)人為兩男(分別記為A、B)兩女(分別記為C、D),現(xiàn)要隨機(jī)在這4人中選2人參加學(xué)校組織的校級(jí)訓(xùn)練,請(qǐng)用列表或樹(shù)狀圖的方法求出剛好選中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=,AC=,BC=3,將△ABC沿射線BC平移,使邊AB平移到DE,得到△DEF.
(1)作出平移后的△DEF(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);
(2)若AC、DE相交于點(diǎn)H,BE=2,求四邊形DHCF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OA是⊙O的半徑,點(diǎn)E為圓內(nèi)一點(diǎn),且OA⊥OE,AB是⊙O的切線,EB交⊙O于點(diǎn)F,BQ⊥AF于點(diǎn)Q.
(1)如圖1,求證:OE∥AB;
(2)如圖2,若AB=AO,求的值;
(3)如圖3,連接OF,∠EOF的平分線交射線AF于點(diǎn)P,若OA=2,cos∠PAB=,求OP的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com