【題目】把兩個全等的矩形ABCD和EFGH如圖1擺放(點D和點G重合,點C和點H重合),點A、D(G)在同一條直線上,AB=6cm,BC=8cm.如圖2,△ABC從圖1位置出發(fā),沿BC方向勻速運動,速度為1cm/s,AC與GH交于點P;同時,點Q從點E出發(fā),沿EF方向勻速運動,速度為1cm/s.點Q停止運動時,△ABC也停止運動.設(shè)運動時間為t(s)(0<t<6).
(1)當t為何值時,CQ∥FH;
(2)過點Q作QM⊥FH于點N,交GF于點M,設(shè)五邊形GBCQM的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,是否存在某一時刻,使點M在線段PC的中垂線上?若存在,請求出t的值;若不存在,請說明理由.
【答案】(1)t=時,CQ∥FH;(2)(3)存在某一時刻,使點M在線段PC的中垂線上,t的值為s.
【解析】
(1)由矩形的性質(zhì)得出BC=EH=GF=8cm,AB=EF=6cm,∠1B=∠E=∠EFG=90°,由勾股定理得出AC=FH=10(cm),由平行線得出△CEQ∽△HEF,根據(jù)相似三角形對應(yīng)邊成比例即可得出答案;
(2)證明△FMQ∽△EFH,得出,求出MF=(6﹣t),當0<t<6時,五邊形GBCQM的面積為y=梯形GBEF的面積﹣△CEQ的面積﹣△MFQ的面積,代入面積公式進行計算即可;
(3)由平行線得出△PCH∽△ACB,求出PH=t,得出PG=6﹣t,連接PM、CM,作MK⊥BC于K點,則四邊形GHKM為矩形,得出MK=GH=6,EK=MF=(6﹣t),則CK=8﹣t﹣(6﹣t),由垂直平分線的性質(zhì)得出PM=CM,由勾股定理得出方程,解方程即可.
(1)∵四邊形ABCD和四邊形EFGH是兩個全等的矩形,
∴BC=EH=GF=8cm,AB=EF=6cm,∠1B=∠E=∠EFG=90°,
∴AC=FH==10(cm),
當CQ∥FH時,△CEQ∽△HEF,
∴,即,
解得:t=,
即t=時,CQ∥FH;
(2)∵QM⊥FH,
∴∠FNQ=90°=∠EFG,
∴∠QMF+∠MFN=∠MFN+∠EFH=90°,
∴∠QMF=∠EFH,
∴△FMQ∽△EFH,
∴,即,
解得:MF=(6﹣t),
當0<t<6時,五邊形GBCQM的面積為y=梯形GBEF的面積﹣△CEQ的面積﹣△MFQ的面積
=(8+8+8﹣t)×6﹣×(8﹣t)×t﹣(6﹣t)×(6﹣t)=,
即y與t之間的函數(shù)關(guān)系式為:;
(3)存在,理由如下:
∵AB∥GH,
∴△PCH∽△ACB,
∴,即,
∴PH=t,
∴PG=6﹣t,
連接PM、CM,作MK⊥BC于K點,如圖2所示:
則四邊形GHKM為矩形,
∴MK=GH=6,EK=MF=(6﹣t),
∴CK=8﹣t﹣(6﹣t),
若M在PC的垂直平分線上,則PM=CM,
由勾股定理得:PM2=PG2+MG2,CM2=CK2+MK2,
∴PG2+MG2=CK2+MK2,
即(6﹣t)2+[8﹣(6﹣t)]2=62+[8﹣t﹣(6﹣t)]2,
整理得: t2﹣2t=0,
解得:t=,或t=0(不合題意舍去),
∴t=;
即存在某一時刻,使點M在線段PC的中垂線上,t的值為s.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA是⊙O的半徑,點E為圓內(nèi)一點,且OA⊥OE,AB是⊙O的切線,EB交⊙O于點F,BQ⊥AF于點Q.
(1)如圖1,求證:OE∥AB;
(2)如圖2,若AB=AO,求的值;
(3)如圖3,連接OF,∠EOF的平分線交射線AF于點P,若OA=2,cos∠PAB=,求OP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線BD經(jīng)過坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數(shù)的圖象上.若點A的坐標為(﹣4,﹣4),則k的值為( 。
A. 16B. ﹣3C. 5D. 5或﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明參加班長競選,需進行演講答辯與民主測評,民主測評時一人一票,按“優(yōu)秀、良好、一般”三選一投票.如圖是7位評委對小明“演講答辯”的評分統(tǒng)計圖及全班50位同學(xué)民主測評票數(shù)統(tǒng)計圖.
(1)求評委給小明演講答辯分數(shù)的眾數(shù),以及民主測評為“良好”票數(shù)的扇形圓心角度數(shù);
(2)求小明的綜合得分是多少?
(3)在競選中,小亮的民主測評得分為82分,如果他的綜合得分不小于小明的綜合得分,他的演講答辯得分至少要多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,直線y=kx+b(k<0),經(jīng)過點(6,0),且與坐標軸圍成的三角形的面積是9,與函數(shù)y=(x>0)的圖象G交于A,B兩點.
(1)求直線的表達式;
(2)橫、縱坐標都是整數(shù)的點叫作整點.記圖象G在點A、B之間的部分與線段AB圍成的區(qū)域(不含邊界)為W.
①當m=2時,直接寫出區(qū)域W內(nèi)的整點的坐標 ;
②若區(qū)域W內(nèi)恰有3個整數(shù)點,結(jié)合函數(shù)圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在爭創(chuàng)“全國文明城市”活動中,組織全體學(xué)生參加了“創(chuàng)文”知識競賽,為了解各年級成績情況,學(xué)校這樣做的:
(收集數(shù)據(jù))從七、八、九三個年級的競賽成績中各隨機抽取了10名學(xué)生成績?nèi)缦卤恚?/span>
七年級 | 60 | 70 | 60 | 100 | 80 | 70 | 80 | 60 | 40 | 90 |
八年級 | 80 | 80 | 100 | 40 | 70 | 60 | 80 | 90 | 50 | 80 |
九年級 | 70 | 50 | 60 | 90 | 100 | 80 | 80 | 90 | 70 | 70 |
(整理、描述數(shù)據(jù))(說明:80≤x≤100為優(yōu)秀,60≤x<80為合格,40≤x<60為一般)
年級 | 40≤x<60 | 60≤x<80 | 80≤x≤100 |
七年級 | 1 | 5 | 4 |
八年級 | 2 | 2 | 6 |
九年級 | 1 | 4 | 5 |
年級 | 平均數(shù) | 眾數(shù) | 中位數(shù) |
七年級 | a | 60 | 70 |
八年級 | 73 | b | 80 |
九年級 | 76 | 70 | c |
(分析數(shù)據(jù))三組樣本數(shù)據(jù)的平均分、眾數(shù)、中位數(shù)如上表所示,其中a= ,b= ,c= .
(得出結(jié)論)請你根據(jù)以上信息,推斷你認為成績好的年級,并說明理由(至少從兩個角度說明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A1(1,)在直線y=kx上,過點A1作A1B1∥y軸交直線y=x于點B1,以A1B1為邊在A1B1的右側(cè)作正方形A1B1C1D1,直線C1D1分別交直線y=kx和y=x于A2,B2兩點,以A2B2為邊在A2B2的右側(cè)作等正方形A2B2C2D2…,直線C2D2分別交直線y=kx和y=x于A3,B3兩點,以A3B3為邊在A3B3的右側(cè)作正方形A3B3C3D3,…,按此規(guī)律進行下去,則正方形AnBnCnDn的面積為____________.(用含正整數(shù)n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“單詞的記憶效率”是指復(fù)習(xí)一定量的單詞,一周后能正確默寫出的單詞個數(shù)與復(fù)習(xí)的單詞個數(shù)的比值.右圖描述了某次單詞復(fù)習(xí)中四位同學(xué)的單詞記憶效率與復(fù)習(xí)的單詞個數(shù)的情況,則這四位同學(xué)在這次單詞復(fù)習(xí)中正確默寫出的單詞個數(shù)最多的是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com