【題目】如圖,的角平分線,上,,若,,則________________

【答案】

【解析】

過點DDM⊥AC于點M,作DN⊥AB于點N,設CM=,表示出CDDM,再證明Rt△AMDRt△AND,根據(jù)AB+CE=7,列出等式解出x,過點BAC的平行線交AD延長線于點F,證明△BFD∽△CAD,從而求出AE.

過點DDM⊥AC于點M,作DN⊥AB于點N,如圖,

CM=

,

CD=7x,

,

AD平分∠BAC,

DN=DM=3x,

∵BD=3,

AD=DE,

,

Rt△AMDRt△AND中,

Rt△AMDRt△ANDHL),

AM=AN,

AN=EM,

AB+CE=7,

BN+AN+CE=7,

∴BN+EM+CE=7

BN+CM=7,

∴BN=7-CM,

,

解得:,

CD=,,,

過點BAC的平行線交AD延長線于點F

∠F=∠CAD,

AD平分∠BAC,

∠BAD=∠CAD,

∠BAD=∠F,

BF=AB,

BF∥AC,

∴△BFD∽△CAD,

,

,

AN=AM=y,則AB=AN+BN=,

AC=AM+CM=,

,

解得:,

AE=2y,

故答案為:.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,以點M(0,)為圓心,長為半徑作Mx軸于A.B兩點,交y軸于C.D兩點,連接AM并延長交MP點,連接PCx軸于E.

(1)求點C.P的坐標;

(2)求證:BE=2OE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,AB10,連接BD,點P是射線BC上一點(不與點B重合),AP與對角線BD交于點E,連接EC

1)求證:AECE

2)若sinABD,當點P在線段BC上時,若BP4,求△PEC的面積;

3)若∠ABC45°,當點P在線段BC的延長線上時,請直接寫出△PEC是等腰三角形時BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以原點O為圓心,3為半徑的圓與x軸分別交于A,B兩點(點B在點A的右邊),P是半徑OB上一點,過P且垂直于AB的直線與O分別交于C,D兩點(點C在點D的上方),直線AC,DB交于點E.若AC:CE=1:2.

(1)求點P的坐標;

(2)求過點A和點E,且頂點在直線CD上的拋物線的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,∠BAC90°,ABAC,DE兩點分別在AC,BC上,且DEAB,將△CDE繞點C按順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α

1)問題發(fā)現(xiàn):當α0°時,的值為   ;

2)拓展探究:當0°≤α360°時,若△EDC旋轉(zhuǎn)到如圖2的情況時,求出的值;

3)問題解決:當△EDC旋轉(zhuǎn)至A,BE三點共線時,若設CE5AC4,直接寫出線段BE的長   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,為直徑,弦于點、,連接、

1)如圖①,求的度數(shù);

2)如圖②,弦于點.在上取點,連接、,使,求證:;

3)如圖③,在(2)的條件下,,的直徑為,連接,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:對于線段和點,當,且時,稱點為線段的“等距點”.特別地,當,且時,稱點為線段的“強等距點”.在平面直角坐標系中,點的坐標為

1)有4個點:,,.線段的“等距點”是 ;其中線段的“強等距點”是

2)設第四象限有一點,點是線段的“強等距點”.

①當時,求點的坐標;

②當點又為線段的“等距點”時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在中,,點邊上,點邊上,,過點的延長線于點

1)如圖1,當時:①的度數(shù)為__________;②求證;;

2)如圖2,當時,求的值(用含的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為緩解交通壓力,市郊某地正在修建地鐵站,擬同步修建地下停車庫.如圖是停車庫坡道入口的設計圖,其中MN是水平線,MNAD,ADDE,CFAB,垂足分別為D,F(xiàn),坡道AB的坡度=1:3,AD=9米,點CDE上,CD=0.5米,CD是限高標志牌的高度(標志牌上寫有:限高   米).如果進入該車庫車輛的高度不能超過線段CF的長,則該停車庫限高多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈3.16)

查看答案和解析>>

同步練習冊答案