【題目】如圖,以原點(diǎn)O為圓心,3為半徑的圓與x軸分別交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右邊),P是半徑OB上一點(diǎn),過P且垂直于AB的直線與⊙O分別交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的上方),直線AC,DB交于點(diǎn)E.若AC:CE=1:2.
(1)求點(diǎn)P的坐標(biāo);
(2)求過點(diǎn)A和點(diǎn)E,且頂點(diǎn)在直線CD上的拋物線的函數(shù)表達(dá)式.
【答案】(1) P(1,0).(2) y=x2﹣x﹣.
【解析】
試題分析:(1)如圖,作EF⊥y軸于F,DC的延長(zhǎng)線交EF于H.設(shè)H(m,n),則P(m,0),PA=m+3,PB=3﹣m.首先證明△ACP∽△ECH,推出,推出CH=2n,EH=2m=6,再證明△DPB∽△DHE,推出,可得,求出m即可解決問題;
(2)由題意設(shè)拋物線的解析式為y=a(x+3)(x﹣5),求出E點(diǎn)坐標(biāo)代入即可解決問題.
試題解析:(1)如圖,作EF⊥y軸于F,DC的延長(zhǎng)線交EF于H.設(shè)H(m,n),則P(m,0),PA=m+3,PB=3﹣m.
∵EH∥AP,
∴△ACP∽△ECH,
∴,
∴CH=2n,EH=2m=6,
∵CD⊥AB,
∴PC=PD=n,
∵PB∥HE,
∴△DPB∽△DHE,
∴,
∴,
∴m=1,
∴P(1,0).
(2)由(1)可知,PA=4,HE=8,EF=9,
連接OP,在Rt△OCP中,PC=,
∴CH=2PC=4,PH=6,
∴E(9,6),
∵拋物線的對(duì)稱軸為CD,
∴(﹣3,0)和(5,0)在拋物線上,設(shè)拋物線的解析式為y=a(x+3)(x﹣5),把E(9,6)代入得到a=,
∴拋物線的解析式為y=(x+3)(x﹣5),即y=x2﹣x﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《函數(shù)的圖象與性質(zhì)》拓展學(xué)習(xí)片段展示:
【問題】如圖①,在平面直角坐標(biāo)系中,拋物線y=a(x﹣2)2﹣經(jīng)過原點(diǎn)O,與x軸的另一個(gè)交點(diǎn)為A,則a= .
【操作】將圖①中拋物線在x軸下方的部分沿x軸折疊到x軸上方,將這部分圖象與原拋物線剩余部分的圖象組成的新圖象記為G,如圖②.直接寫出圖象G對(duì)應(yīng)的函數(shù)解析式.
【探究】在圖②中,過點(diǎn)B(0,1)作直線l平行于x軸,與圖象G的交點(diǎn)從左至右依次為點(diǎn)C,D,E,F(xiàn),如圖③.求圖象G在直線l上方的部分對(duì)應(yīng)的函數(shù)y隨x增大而增大時(shí)x的取值范圍.
【應(yīng)用】P是圖③中圖象G上一點(diǎn),其橫坐標(biāo)為m,連接PD,PE.直接寫出△PDE的面積不小于1時(shí)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系XOY中,A(-1,5),B(-1,0),C(-4,3).
(1)請(qǐng)畫出△ABC關(guān)于y軸對(duì)稱的△A′B′C′(其中A′,B′,C′分別是A,B,C的對(duì)應(yīng)點(diǎn),不寫畫法);
(2)直接寫出A′,B′,C′三點(diǎn)的坐標(biāo):A′( ),B′( ),C′( )
(3)計(jì)算△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC,請(qǐng)用直尺(不帶刻度)和圓規(guī),按下列要求作圖(不要求寫作法,但要保留作圖痕跡):
(1)作△ABC的外心O;
(2)設(shè)D是AB邊上一點(diǎn),在圖中作出一個(gè)正六邊形DEFGHI,使點(diǎn)F,點(diǎn)H分別在邊BC和AC上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
=1- , = - , = - .
將以上三個(gè)等式的兩邊分別相加,得:
+ + =1- + - + - =1- = .
(1)直接寫出計(jì)算結(jié)果:
+ + +…+ =.
(2)仿照 =1- , = - , = - 的形式,猜想并寫出: =.
(3)解方程: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=30°,∠C=50°,AE是∠BAC的平分線,AD是高.
(1)求∠BAE的度數(shù);
(2)求∠EAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,每個(gè)小正方形邊長(zhǎng)都是1.
(1)按要求作圖:
①△ABC關(guān)于x軸對(duì)稱的圖形△ ;
②將△ 向右平移6個(gè)單位得到△ .
(2)回答下列問題:
①△ 中頂點(diǎn)B2坐標(biāo)為 .
②若 為△ABC邊上一點(diǎn),則按照(1)中①、②作圖,點(diǎn)P對(duì)應(yīng)的點(diǎn)P2的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y是x 的函數(shù),自變量x的取值范圍是x >0,下表是y與x 的幾組對(duì)應(yīng)值.
x | ··· | 1 | 2 | 3 | 5 | 7 | 9 | ··· |
y | ··· | 1.98 | 3.95 | 2.63 | 1.58 | 1.13 | 0.88 | ··· |
小騰根據(jù)學(xué)習(xí)一次函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的y與x之間的變化規(guī)律,對(duì)該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小騰的探究過程,請(qǐng)補(bǔ)充完整:
(1)如圖,在平面直角坐標(biāo)系 中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(2)根據(jù)畫出的函數(shù)圖象,寫出:
①x=4對(duì)應(yīng)的函數(shù)值y約為;
②該函數(shù)的一條性質(zhì): .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com