【題目】如圖,E,F分別是正方形ABCD的邊CB,DC延長線上的點,且BE=CF,過點E作EG∥BF,交正方形外角的平分線CG于點G,連接GF.
(1)求∠AEG的度數(shù);
(2)求證:四邊形BEGF是平行四邊形.
【答案】(1)90°;(2)證明見解析.
【解析】
(1)由SAS證明△ABE≌△BCF得出AE=BF,∠BAE=∠CBF,由平行線的性質(zhì)得出∠CBF=∠CEG,證出AE⊥EG,即可得出結(jié)論;
(2)延長AB至點P,使BP=BE,連接EP,則AP=CE,∠EBP=90°,證明△APE≌△ECG得出AE=EG,證出EG=BF,即可得出結(jié)論.
證明:(1)∵四邊形ABCD是正方形,
∴AB=BC,∠ABC=∠BCD=90°,
∴∠ABE=∠BCF=90°,
在△ABE和△BCF中,
∴△ABE≌△BCF(SAS),
∴AE=BF,∠BAE=∠CBF,
∵EG∥BF,
∴∠CBF=∠CEG,
∵∠BAE+∠BEA=90°,
∴∠CEG+∠BEA=90°,
∴AE⊥EG,
∴∠AEG的度數(shù)為90°;
(2)延長AB至點P,使BP=BE,連接EP,如圖所示:
則AP=CE,∠EBP=90°,
∴∠P=45°,
∵CG為正方形ABCD外角的平分線,
∴∠ECG=45°,
∴∠P=∠ECG,
由(1)得∠BAE=∠CEG,
在△APE和△ECG中,
∴△APE≌△ECG(ASA),
∴AE=EG,
∵AE=BF,
∴EG=BF,
∵EG∥BF,
∴四邊形BEGF是平行四邊形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了研究一種新藥的療效,選100名患者隨機分成兩組,每組各50名,一組服藥,另一組不服藥,12周后,記錄了兩組患者的生理指標(biāo)和的數(shù)據(jù),并制成下圖,其中“*”表示服藥者,“+”表示未服藥者;
同時記錄了服藥患者在4周、8周、12周后的指標(biāo)z的改善情況,并繪制成條形統(tǒng)計圖.
根據(jù)以上信息,回答下列問題:
(1)從服藥的50名患者中隨機選出一人,求此人指標(biāo)的值大于1.7的概率;
(2)設(shè)這100名患者中服藥者指標(biāo)數(shù)據(jù)的方差為,未服藥者指標(biāo)數(shù)據(jù)的方差為,則 ;(填“>”、“=”或“<” )
(3)對于指標(biāo)z的改善情況,下列推斷合理的是 .
①服藥4周后,超過一半的患者指標(biāo)z沒有改善,說明此藥對指標(biāo)z沒有太大作用;
②在服藥的12周內(nèi),隨著服藥時間的增長,對指標(biāo)z的改善效果越來越明顯.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解七、八年級學(xué)生一分鐘跳繩情況,從這兩個年級隨機抽取名學(xué)生進(jìn)行測試,并對測試成績(一分鐘跳繩次數(shù))進(jìn)行整理、描述和分析,下面給出了部分信息:
七年級學(xué)生一分鐘跳繩成績頻數(shù)分布直方圖
七、八年級學(xué)生一分鐘跳繩成績分析表
七年級學(xué)生一分鐘跳繩成績(數(shù)據(jù)分組:)在這一組的是:
根據(jù)以上信息,回答下列問題:
表中 ;
在這次測試中,七年級甲同學(xué)的成績次,八年級乙同學(xué)的成績,他們的測試成績,在各自年級所抽取的名同學(xué)中,排名更靠前的是 (填“甲”或“乙”),理由是 .
該校七年級共有名學(xué)生,估計一分鐘跳繩不低于次的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,,,過點作邊的垂線交的延長線于點,點是垂足,連接、,交于點.則下列結(jié)論:①四邊形是正方形;②;③;④,正確的個數(shù)是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),與y軸交于(0,2),拋物線的對稱軸為直線x=1,則下列結(jié)論中:①a+c=b;②方程ax2+bx+c=0的解為﹣1和3;③2a+b=0;④c﹣a>2,其中正確的結(jié)論有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將圓心角為120°的扇形AOB繞著點A按逆時針方向旋轉(zhuǎn)一定的角度后,得到扇形AO′B′,使得點O′ 恰在上.
(1)求作點O′;(尺規(guī)作圖,保留作圖痕跡,不寫作法和證明過程)
(2)連接AB、AB'、AO′,求證:AO′平分∠BAB′.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接2022年冬奧會,鼓勵更多的大學(xué)生參與到志愿服務(wù)中,甲、乙兩所學(xué)校組織了志愿服務(wù)團(tuán)隊選拔活動,經(jīng)過初選,兩所學(xué)校各有300名學(xué)生進(jìn)入綜合素質(zhì)展示環(huán)節(jié),為了了解這些學(xué)生的整體情況,從兩校進(jìn)入綜合素質(zhì)展示環(huán)節(jié)的學(xué)生中分別隨機抽取了50名學(xué)生的綜合素質(zhì)展示成績(百分制),并對數(shù)據(jù)(成績)進(jìn)行整理、描述和分析,下面給出了部分信息.
a.甲學(xué)校學(xué)生成績的頻數(shù)分布直方圖如圖(數(shù)據(jù)分成6組:,,,,,).
b.甲學(xué)校學(xué)生成績在這一組是:
80 80 81 81.5 82 83 83 84
85 86 86.5 87 88 88.5 89 89
c.乙學(xué)校學(xué)生成績的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(85分及以上為優(yōu)秀)如下:
平均數(shù) | 中位數(shù) | 眾數(shù) | 優(yōu)秀率 |
83.3 | 84 | 78 | 46% |
根據(jù)以上信息,回答下列問題:
(1)甲學(xué)校學(xué)生,乙學(xué)校學(xué)生的綜合素質(zhì)展示成績同為82分,這兩人在本校學(xué)生中綜合素質(zhì)展示排名更靠前的是________(填“”或“”);
(2)根據(jù)上述信息,推斷________學(xué)校綜合素質(zhì)展示的水平更高,理由為:__________________________
(至少從兩個不同的角度說明推斷的合理性).
(3)若每所學(xué)校綜合素質(zhì)展示的前120名學(xué)生將被選入志愿服務(wù)團(tuán)隊,預(yù)估甲學(xué)校分?jǐn)?shù)至少達(dá)到________分的學(xué)生才可以入選.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】投石機是古代的大型攻城武器,是數(shù)學(xué)、工程、物理等復(fù)雜學(xué)科相互融合的應(yīng)用(如圖(1)).在我國《元史·亦思馬因傳》中對這種投石機就有過記載(如圖(2)).
圖(3)是圖(1)中人工投石機的側(cè)面示意圖,炮架的橫向支架均與地面相互平行,已知米,炮軸距地面4.5米,,炮梢頂端點能到達(dá)水平地面,最高點能到達(dá)點處,且旋轉(zhuǎn)的夾角(點,,,在同一平面內(nèi)),求點到水平地面的距離.(參考數(shù)據(jù):,,,,,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com