【題目】如圖,已知點A是以MN為直徑的半圓上一個三等分點,點B是弧的中點,點P是半徑ON上的點.若⊙O的半徑為l,則AP+BP的最小值為(  )

A. 2B. C. D. 1

【答案】C

【解析】

首先找出點A關(guān)于MN對稱的對稱點A`,AP+BP的最小值就是A`B的長度.

如圖,作點A關(guān)于MN的對稱點A`,連接BA`交圓于P,則點P即是所求作的點,

∵A是半圓上一個三等分點,

∴∠AON=∠A`ON=360°÷2÷3=60°,

又∵點B是弧AN的中點,

∴∠BON= ∠AON= ×60°=30°

∴∠A'OB=∠A`ON+∠BON=60°+30°=90°

在Rt△A`OB中,由勾股定理得:

A`B =A`O +BO =1+1=2

得:A`B= ,

所以:AP+BP的最小值是

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,ABAC10,BC16.點D在邊BC上,且點D到邊AB和邊AC的距離相等.

1)用直尺和圓規(guī)作出點D(不寫作法,保留作圖痕跡,在圖上標注出點D);

2)求點D到邊AB的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在三角形ABC中,AB=6,AC=BC=5,以BC為直徑作⊙OAB于點D,交AC于點G,直線DF是⊙O的切線,D為切點,交CB的延長線于點E.

(1)求證:DFAC;

(2)求tanE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑的OBC相交于點D,過點DDEAC于點E

1)求證:DEO切線;

2)若tanB=BC16,求O直徑AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC和DCB中,AB = DC,AC = DB,AC與DB交于點M.

1求證:ABC≌△DCB

2過點C作CNBD,過點B作BNAC,CN與BN交于點N,試判斷線段BN與CN的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,點O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連接AD.已知∠CAD=∠B

1)求證:AD是⊙O的切線;

2)若CD2,AC4,BD6,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將繞點B順時針旋轉(zhuǎn),得到,連接、.

(1)求證:為等邊三角形;

(2),,求;

(3)已知,點在四邊形內(nèi)部(包括邊界).若點F由點B運動至點E,其運動過程滿足,求點運動路徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直覺的誤差:有一張8cm×8cm的正方形紙片,面積是64cm2.把這些紙片按圖1所示剪開成四小塊,其中兩塊是三角形,另外兩塊是梯形.把剪出的4個小塊按圖2所示重新拼合,這樣就得到了一個13cm×5cm的長方形,面積是65cm2,面積多了1cm2,這是為什么?

小明給出如下證明:如圖2,可知,tanCEF,tanEAB,∵tanCEFtanEAB,∴∠CEF>∠EAB,∵EFAB,∴∠EAB+AEF180°,∴CEF+AEF180°,因此A、E、C三點不共線.同理AG、C三點不共線,所以拼合的長方形內(nèi)部有空隙,故面積多了1cm2

1)小紅給出的證明思路為:以B為原點,BC所在的直線為x軸,建立平面直角坐標系,證明三點不共線.請你幫小紅完成她的證明;

2)將13cmx13cm的正方形按上述方法剪開拼合,是否可以拼合成一個長方形,但面積少了1cm2?如果能,求出剪開的三角形的短邊長;如果不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點AACx軸交拋物線于點C,AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設(shè)其橫坐標為m.

(1)求拋物線的解析式;

(2)若動點P在直線OE下方的拋物線上,連結(jié)PE、PO,當m為何值時,四邊形AOPE面積最大,并求出其最大值;

(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案