分析 (1)連接OD,證∠ODF=90°即可.
(2)利用△ADF是30°的直角三角形可求得AF長(zhǎng),同理可利用△FHC中的60°的三角函數(shù)值可求得FG長(zhǎng).
解答 (1)證明:連接OD,
∵以等邊三角形ABC的邊AB為直徑的半圓與BC邊交于點(diǎn)D,
∴∠B=∠C=∠ODB=60°,
∴OD∥AC,
∵DF⊥AC,
∴∠CFD=∠ODF=90°,即OD⊥DF,
∵OD是以邊AB為直徑的半圓的半徑,
∴DF是圓O的切線;
(2)∵OB=OD=$\frac{1}{2}$AB=6,且∠B=60°,
∴BD=OB=OD=6,
∴CD=BC-BD=AB-BD=12-6=6,
∵在Rt△CFD中,∠C=60°,
∴∠CDF=30°,
∴CF=$\frac{1}{2}$CD=$\frac{1}{2}$×6=3,
∴AF=AC-CF=12-3=9,
∵FG⊥AB,
∴∠FGA=90°,
∵∠FAG=60°,
∴FG=AFsin60°=$\frac{9\sqrt{3}}{2}$.
點(diǎn)評(píng) 本題主要考查了直線與圓的位置關(guān)系、等邊三角形的性質(zhì)、垂徑定理等知識(shí),判斷直線和圓的位置關(guān)系,一般要猜想是相切,那么證直線和半徑的夾角為90°即可;注意利用特殊的三角形和三角函數(shù)來(lái)求得相應(yīng)的線段長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=x-1 | B. | y=x+1 | C. | y=-x-1 | D. | y=-x+1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 250km | B. | 240km | C. | 200km | D. | 180km |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com