【題目】如圖,在△ABC中,∠C=90°,點(diǎn)O在AC上,以OA為半徑的⊙O交AB于點(diǎn)D,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.
(1)求證:直線DE是⊙O的切線;
(2)若AC=6,BC=8,OA=2,求線段AD和DE的長(zhǎng).
【答案】(1)見解析;(2)4.75.
【解析】試題分析:(1)連接OD,通過線段垂直平分線的性質(zhì)和等腰三角形的性質(zhì)證明∠EDB+∠ODA=90°,進(jìn)而得出OD⊥DE,根據(jù)切線的判定即可得出結(jié)論;
(2)連接OE,作OH⊥AD于H.則AH=DH,由△AOH∽△ABC,可得,推出AH=,AD=,設(shè)DE=BE=x,CE=8-x,根據(jù)OE2=DE2+OD2=EC2+OC2,列出方程即可解決問題;
試題解析:
(1)證明:連接OD,
∵EF垂直平分BD,
∴EB=ED,
∴∠B=∠EDB,
∵OA=OD,
∴∠ODA=∠A,
∵∠C=90°,
∴∠A+∠B=90°,
∴∠EDB+∠ODA=90°,
∴∠ODE=90°,
∴OD⊥DE,
∴DE是⊙O的切線.
(2)解:連接OE,作OH⊥AD于H.則AH=DH,
∵△AOH∽△ABC,
∴,
∴,
∴AH=,AD=,設(shè)DE=BE=x,CE=8﹣x,
∵OE2=DE2+OD2=EC2+OC2 ,
∴42+(8﹣x)2=22+x2 ,
解得x=4.75,
∴DE=4.75.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,觀察由棱長(zhǎng)為 的小立方體擺成的圖形,尋找規(guī)律:如圖 ① 中,共有 個(gè)小立方體,其中 個(gè)看得見, 個(gè)看不見;如圖 ② 中,共有 個(gè)小立方體,其中 個(gè)看得見, 個(gè)看不見;如圖 ③ 中,共有 個(gè)小立方體,其中 個(gè)看得見, 個(gè)看不見; ,則第 ⑥個(gè)圖中,看得見的小立方體有________________個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為倡導(dǎo)綠色出行,平陽縣在昆陽鎮(zhèn)設(shè)立了公共自行車服務(wù)站點(diǎn),小明對(duì)某站點(diǎn)公共自行車的租用情況進(jìn)行了調(diào)查,將該站點(diǎn)一天中市民每次租用公共自行車的時(shí)間t(單位:分)(t≤120)分成A,B,C,D四個(gè)組進(jìn)行各組人次統(tǒng)計(jì),并繪制了如下的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答下列問題:
(1)該站點(diǎn)一天中租用公共自行車的總?cè)舜螢?/span> ,表示A的扇形圓心角的度數(shù)是 .
(2)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)考慮到公共自行車項(xiàng)目是公益服務(wù),公共自行車服務(wù)公司規(guī)定:市民每次使用公共自行收費(fèi)2元,已知昆陽鎮(zhèn)每天租用公共自行車(時(shí)間在2小時(shí)以內(nèi))的市民平均有5000人次,據(jù)此估計(jì)公共自行車服務(wù)公司每天可收入多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從地出發(fā),勻速駛向地.甲車以的速度行駛后,乙車才沿相同路線行駛.乙車先到達(dá)地并停留后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離與乙車行駛時(shí)間之間的函數(shù)關(guān)系如圖所示.下列說法:①乙車的速度是;②;③點(diǎn)的坐標(biāo)是;④.其中說法正確的是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,D是等邊△ABC的邊BA上一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊,在BC上方作等邊△DCF,連接AF,你能發(fā)現(xiàn)AF與BD之間的數(shù)量關(guān)系嗎?并證明你發(fā)現(xiàn)的結(jié)論;
(2)如圖②,當(dāng)動(dòng)點(diǎn)D運(yùn)動(dòng)至等邊△ABC邊BA的延長(zhǎng)線時(shí),其他作法與(1)相同,猜想AF與BD在(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)證明;
(3)Ⅰ.如圖③,當(dāng)動(dòng)點(diǎn)D在等邊△ABC邊BA上運(yùn)動(dòng)時(shí)(點(diǎn)D與B不重合),連接DC,以DC為邊在BC上方和下方分別作等邊△DCF和等邊△DCF′,連接AF,BF′,探究AF,BF′與AB有何數(shù)量關(guān)系?并證明你的探究的結(jié)論;
Ⅱ.如圖④,當(dāng)動(dòng)點(diǎn)D在等邊△ABC的邊BA的延長(zhǎng)線上運(yùn)動(dòng)時(shí),其他作法與圖③相同,Ⅰ中的結(jié)論是否成立?若不成立,是否有新的結(jié)論?并證明你得出的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=ax2﹣2ax+與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),拋物線的頂點(diǎn)為C,直線AC交y軸于點(diǎn)D,D為AC的中點(diǎn).
(1)如圖1,求拋物線的頂點(diǎn)坐標(biāo);
(2)如圖2,點(diǎn)P為拋物線對(duì)稱軸右側(cè)上的一動(dòng)點(diǎn),過點(diǎn)P作PQ⊥AC于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為t,點(diǎn)Q的橫坐標(biāo)為m,求m與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,如圖3,連接AP,過點(diǎn)C作CE⊥AP于點(diǎn)E,連接BE、CE分別交PQ于F、G兩點(diǎn),當(dāng)點(diǎn)F是PG中點(diǎn)時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,AB=AC,D 是直線 BC 上一點(diǎn)(不與點(diǎn) B、C 重合),以 AD 為一邊在 AD的右側(cè)作△ADE,AD=AE,∠DAE=∠BAC,連接 CE.
(1)如圖 1,當(dāng)點(diǎn) D 在線段 BC 上時(shí),求證:△ABD≌△ACE;
(2)如圖 2,當(dāng)點(diǎn) D 在線段 BC 上時(shí),如果∠BAC=90°,求∠BCE 的度數(shù);
(3)如圖 3,若∠BAC=α,∠BCE=β.點(diǎn) D 在線段 CB 的延長(zhǎng)線上時(shí),則α、β之間有怎樣 的數(shù)量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線交⊙O于A、B兩點(diǎn),AE是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),且AC平分∠PAE,過C作,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若DC+DA=6,⊙O的直徑為10,求AB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點(diǎn)A、B、C,請(qǐng)?jiān)诰W(wǎng)格中進(jìn)行下列操作:
(1)請(qǐng)?jiān)趫D中確定該圓弧所在圓心D點(diǎn)的位置,D點(diǎn)坐標(biāo)為 ;
(2)連接AD、CD,求⊙D的半徑及扇形DAC的圓心角度數(shù);
(3)若扇形DAC是某一個(gè)圓錐的側(cè)面展開圖,求該圓錐的底面半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com