【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標系,一條圓弧經過網(wǎng)格點A、B、C,請在網(wǎng)格中進行下列操作:
(1)請在圖中確定該圓弧所在圓心D點的位置,D點坐標為 ;
(2)連接AD、CD,求⊙D的半徑及扇形DAC的圓心角度數(shù);
(3)若扇形DAC是某一個圓錐的側面展開圖,求該圓錐的底面半徑.
【答案】(1)D(2,0);(2)扇形DAC的圓心角為90度;(3).
【解析】
試題分析:(1)找到AB,BC的垂直平分線的交點即為圓心坐標;
(2)利用勾股定理可求得圓的半徑;易得△AOD≌△DEC,那么∠OAD=∠CDE,即可得到圓心角的度數(shù)為90°;
(3)求得弧長,除以2π即為圓錐的底面半徑.
解:(1)如圖;D(2,0)(4分)
(2)如圖;;
作CE⊥x軸,垂足為E.
∵△AOD≌△DEC,
∴∠OAD=∠CDE,
又∵∠OAD+∠ADO=90°,
∴∠CDE+∠ADO=90°,
∴扇形DAC的圓心角為90度;
(3)∵弧AC的長度即為圓錐底面圓的周長.l弧=,
設圓錐底面圓半徑為r,則,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點O在AC上,以OA為半徑的⊙O交AB于點D,BD的垂直平分線交BC于點E,交BD于點F,連接DE.
(1)求證:直線DE是⊙O的切線;
(2)若AC=6,BC=8,OA=2,求線段AD和DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場為了吸引顧客,設立了一個如圖可以自由轉動的轉盤,并規(guī)定:顧客每購買300元的商品,就能獲得一次轉動轉盤的機會.如果轉盤停止后,指針正好對準紅、綠或黃色區(qū)域,顧客就可以獲得100元、50元,20元的購物券.(轉盤被等分成20個扇形),已知甲顧客購物320元.
(1)他獲得購物券的概率是多少?
(2)他得到100元、50元、20元購物券的概率分別是多少?
(3)若要讓獲得20元購物券的概率變?yōu)?/span>,則轉盤的顏色部分怎樣修改?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】射擊隊為從甲、乙兩名運動員中選拔一人參加比賽,對他們進行了六次測試,測試成績如下表(單位:環(huán)):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 平均成績 | 中位數(shù) | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 9 | ① |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | ② | 9.5 |
(1)完成表中填空① ;② ;
(2)請計算甲六次測試成績的方差;
(3)若乙六次測試成績方差為,你認為推薦誰參加比賽更合適,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點(2,-4)在正比例函數(shù)y=kx的圖象上。
(1)求k的值;
(2)若點(-1,m)在函數(shù)y=kx的圖象上,試求出m的值;
(3)若A(,y1),B(-2,y2),C(1,y3)都在此函數(shù)圖象上,試比較y1,y2,y3的大小。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:如果一個數(shù)的平方等于,記為,這個數(shù)叫做虛數(shù)單位.那么和我們所學的實數(shù)對應起來就叫做復數(shù),表示為(為實數(shù)),叫這個復數(shù)的實部, 叫做這個復數(shù)的虛部,它的加,減,乘法運算與整式的加,減,乘法運算類似.
例如計算:
(1)填空: =_________, =____________.
(2)填空:①_________; ②_________ .
(3)若兩個復數(shù)相等,則它們的實部和虛部必須分別相等,完成下列問題:已知, ,( 為實數(shù)),求的值.
(4)試一試:請利用以前學習的有關知識將化簡成的形式.
(5)解方程:x2 - 2x +4 = 0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】超速行駛是引發(fā)交通事故的主要原因.上周末,小鵬等三位同學在濱海大道紅樹林路段,嘗試用自己所學的知識檢測車速,觀測點設在到公路l的距離為100米的P處.這時,一輛富康轎車由西向東勻速駛來,測得此車從A處行駛到B處所用的時間為3秒,并測得∠APO=60°,∠BPO=45°,試判斷此車是否超過了每小時80千米的限制速度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(14分)如圖,已知拋物線()與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C,且OC=OB.
(1)求此拋物線的解析式;
(2)若點E為第二象限拋物線上一動點,連接BE,CE,求四邊形BOCE面積的最大值,并求出此時點E的坐標;
(3)點P在拋物線的對稱軸上,若線段PA繞點P逆時針旋轉90°后,點A的對應點A′恰好也落在此拋物線上,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,∠ACD=120°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com