【題目】已知:如圖,在平行四邊形ABCD中,點FAB的延長線上,且BF=AB,連接FD,交BC于點E

1)說明△DCE≌△FBE的理由;

2)若EC=3,求AD的長.

【答案】1)證明見解析(26

【解析】

1)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形的對邊平行且相等,即可得AB=DCAB∥DC,繼而可求得∠CDE=∠F,又由BF=AB,即可利用AAS,判定△DCE≌△FBE

2)由(1),可得BE=EC,即可求得BC的長,又由平行四邊形的對邊相等,即可求得AD的長

1)證明:四邊形ABCD是平行四邊形,

∴AB=DCAB∥DC

∴∠CDE=∠F

∵BF=AB,

∴DC=FB

△DCE△FBE中,

∵∠CDE=∠F∠CED=∠BEF, DC=FB

∴△DCE≌△FBEAAS).

2)解:∵△DCE≌△FBE

∴EB=EC

∵EC=3,

∴BC=2EB=6

四邊形ABCD是平行四邊形,

∴AD=BC

∴AD=6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,在平面直角坐標(biāo)系中,已知拋物線 y=ax2+bx5 x 軸交于 A(﹣1,0),B5, 0)兩點,與 y 軸交于點 C

1)求拋物線的函數(shù)表達(dá)式;

2)若點 D y 軸上的一點,且以 B,CD 為頂點的三角形與ABC 相似,求點 D 的坐標(biāo);

3)如圖 2,CEx 軸與拋物線相交于點 E,點 H 是直線 CE 下方拋物線上的動點,過點 H且與 y 軸平行的直線與 BC,CE 分別相交于點 FG,試探究當(dāng)點 H 運(yùn)動到何處時,四邊形CHEF 的面積最大,求點 H 的坐標(biāo)及最大面積;

4)若點 K 為拋物線的頂點,點 M4,m)是該拋物線上的一點,在 x 軸,y 軸上分別找點 P,Q,使四邊形 PQKM 的周長最小,求出點 PQ 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,FAB上一點,EBC延長線上一點,且AF=EC,連接EF,DEDF,MFE中點,連結(jié)MC,設(shè)FEDC相交于點N.則4個結(jié)論:①DN=DG;②△BFG△EDG△BDE;③CM垂直BDMC=,則BF=2;正確的結(jié)論有( )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形的三邊分別為6cm、8cm10cm,則這個三角形內(nèi)切圓的半徑是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,現(xiàn)有一張矩形紙片ABCDAB4,BC8,點M,N分別在矩形的邊AD,BC上,將矩形紙片沿直線MN折疊,使點C落在矩形的邊AD上,記為點P,點D落在G處,連接PC,交MN丁點Q,連接CM

1)求證:PMPN;

2)當(dāng)P,A重合時,求MN的值;

3)若PQM的面積為S,求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級學(xué)生立定跳遠(yuǎn)水平,隨機(jī)抽取該年級50名學(xué)生進(jìn)行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.

學(xué)生立定跳遠(yuǎn)測試成績的頻數(shù)分布表

分組

頻數(shù)

1.2≤x<1.6

a

1.6≤x<2.0

12

2.0≤x<2.4

b

2.4≤x<2.8

10

請根據(jù)圖表中所提供的信息,完成下列問題:

(1)表中a=   ,b=   ,樣本成績的中位數(shù)落在   范圍內(nèi);

(2)請把頻數(shù)分布直方圖補(bǔ)充完整;

(3)該校九年級共有1000名學(xué)生,估計該年級學(xué)生立定跳遠(yuǎn)成績在2.4≤x<2.8范圍內(nèi)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個批發(fā)店銷售同一種蘋果,在甲批發(fā)店,不論一次購買數(shù)量是多少,價格均為6/.在乙批發(fā)店,一次購買數(shù)量不超過時,價格為7/;一次購買數(shù)量超過時,其中有的價格仍為7/,超過部分的價格為5/.設(shè)小王在同一個批發(fā)店一次購買蘋果的數(shù)量為

(Ⅰ)根據(jù)題意填空:

①若一次購買數(shù)量為時,在甲批發(fā)店的花費(fèi)為________元,在乙批發(fā)店的花費(fèi)為________元;

②若一次購買數(shù)量為時,在甲批發(fā)店的花費(fèi)為________元,在乙批發(fā)店的花費(fèi)為________元;

(Ⅱ)設(shè)在甲批發(fā)店花費(fèi)元,在乙批發(fā)店花費(fèi)元,分別求關(guān)于的函數(shù)解析式;

(Ⅲ)根據(jù)題意填空:

①若小王在甲批發(fā)店和在乙批發(fā)店一次購買蘋果的數(shù)量相同,且花費(fèi)相同,則他在同一個批發(fā)店一次購買蘋果的數(shù)量為_________

②若小王在同一個批發(fā)店一次購買蘋果的數(shù)量為,則他在甲、乙兩個批發(fā)店中的________批發(fā)店購買花費(fèi)少;

③若小王在同一個批發(fā)店一次購買蘋果花費(fèi)了260元,則他在甲、乙兩個批發(fā)店中的_________批發(fā)店購買數(shù)量多.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在港口A的南偏東37°方向的海面上,有一巡邏艇B,A、B相距20海里,這時在巡邏艇的正北方向及港口A的北偏東67°方向上,有一漁船C發(fā)生故障.得知這一情況后,巡邏艇以25海里/小時的速度前往救援,問巡邏艇能否在1小時內(nèi)到達(dá)漁船C處?

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80tan37°≈0.75,sin67°≈,cos67°≈,tan67°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2bxc的圖像如圖所示,則下列結(jié)論正確的個數(shù)有(

c0;②b24ac0;③ abc0;④當(dāng)x>-1時,yx的增大而減。

A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊答案