【題目】如圖,正方形ABCD中,FAB上一點,EBC延長線上一點,且AF=EC,連接EF,DE,DF,MFE中點,連結(jié)MC,設(shè)FEDC相交于點N.則4個結(jié)論:①DN=DG;②△BFG△EDG△BDE;③CM垂直BD;MC=,則BF=2;正確的結(jié)論有( )

A.4B.3C.2D.1

【答案】B

【解析】

根據(jù)正方形的性質(zhì)可得AD=CD,然后利用“邊角邊”證明△ADF和△CDE全等,根據(jù)全等三角形對應(yīng)角相等可得∠ADF=CDE,然后求出∠EDF=ADC=90°,而∠DGN=45°+FDG,∠DNG=45°+CDE,∠FDG不一定等于∠CDE,于是∠DGN不一定等于∠DNG,判斷出①錯誤;

根據(jù)全等三角形對應(yīng)邊相等可得DE=DF,然后判斷出△DEF是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得∠DEF=45°,再根據(jù)兩組角對應(yīng)相等的三角形相似得到△BFG∽△EDG∽△BDE,判斷出②正確;

連接BM、DM,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得然后判斷出直線CM垂直平分BD,判斷出③正確;

過點MMHBCH,得到∠MCH=45°,然后求出MH,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得BF=2MH,判斷出④正確.

在正方形ABCD中,AD=CD,

在△ADF和△CDE中,

∴△ADF≌△CDESAS),

∴∠ADF=CDE,DE=DF

∴∠EDF=FDC+CDE=FDC+ADF=ADC=90°,

∴∠DEF=45°,

∵∠DGN=45°+FDG,∠DNG=45°+CDE,∠FDG≠∠CDE,

而∠FDG與∠CDE不一定相等,

∴∠DGN與∠DNG不一定相等,故判斷出①錯誤;

∵△DEF是等腰直角三角形,

∵∠ABD=DEF=45°,∠BGF=EGD(對頂角相等),

∴△BFG∽△EDG,

∵∠DBE=DEF=45°,∠BDE=EDG,

∴△EDG∽△BDE

∴△BFG∽△EDG∽△BDE,故②正確;

如圖,連接BM、DM

∵△AFD≌△CED

∴∠FDA=EDC,DF=DE,

∴∠FDE=ADC=90°,

MEF的中點,

MD=MB,

在△DCM與△BCM中,

,

∴△DCM≌△BCMSSS),

∴∠BCM=DCM,

CM在正方形ABCD的角平分線AC上,

MC垂直平分BD;故③正確;

過點MMHBCH,則∠MCH=45°,

,

MEF的中點,BFBC,MHBC,

MH是△BEF的中位線,

BF=2MH=2,故④正確;

綜上所述,正確的結(jié)論有②③④.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)y2x+b的圖象與x軸的交點為A2,0),與y軸的交點為B,直線AB與反比例函數(shù)y的圖象交于點C(﹣1m).

1)求一次函數(shù)和反比例函數(shù)的表達式;

2)直接寫出關(guān)于x的不等式2x+b的解集;

3)點P是這個反比例函數(shù)圖象上的點,過點PPMx軸,垂足為點M,連接OPBM,當(dāng)SABM2SOMP時,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來網(wǎng)約車十分流行,初三某班學(xué)生對美團滴滴兩家網(wǎng)約車公司各10名司機月收入進行了一項抽樣調(diào)查,司機月收入(單位:千元)如圖所示:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

平均月收/千元

中位數(shù)/千元

眾數(shù)/千元

方差/千元

“美團”

6

6

1.2

滴滴”

6

4

1)完成表格填空:①__________②__________③__________

2)若從兩家公司中選擇一家做網(wǎng)約車司機,你會選哪家公司,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)社團成員想利用所學(xué)的知識測量某廣告牌的寬度圖中線段MN的長,直線MN垂直于地面,垂足為點在地面A處測得點M的仰角為、點N的仰角為,在B處測得點M的仰角為,米,且A、B、P三點在一直線上請根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.

參考數(shù)據(jù):,,,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是邊長為的等邊三角形,邊在射線上,且,點從點出發(fā),沿OM的方向以1cm/s的速度運動,當(dāng)D不與點A重合時,將繞點C逆時針方向旋轉(zhuǎn)60°得到,連接DE.

(1)如圖1,求證:是等邊三角形;

(2)如圖2,當(dāng)6<t<10時,DE是否存在最小值?若存在,求出DE的最小值;若不存在,請說明理由.

(3)當(dāng)點D在射線OM上運動時是否存在以D,E,B為頂點的三角形是直角三角形?若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識的增強,越來越多的人喜歡騎自行車出行,也給自行車商家?guī)砩虣C.某自行車行經(jīng)營的A型自行車去年銷售總額為8萬元.今年該型自行車每輛售價預(yù)計比去年降低200元.若該型車的銷售數(shù)量與去年相同,那么今年的銷售總額將比去年減少10%,求:

(1)A型自行車去年每輛售價多少元?

(2)該車行今年計劃新進一批A型車和新款B型車共60輛,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍.已知,A型車和B型車的進貨價格分別為1500元和1800元,計劃B型車銷售價格為2400元,應(yīng)如何組織進貨才能使這批自行車銷售獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知有理數(shù)-3,1

1)在下列數(shù)軸上,標(biāo)出表示這兩個數(shù)的點,并分別用A,B表示;

2)若|m=2,在數(shù)軸上表示數(shù)m的點,介于點A,B之間,在A的右側(cè)且到點B距離為5的點表示為n

①計算m+n-mn;

②解關(guān)于x的不等式mx+4n,并把解集表示在下列數(shù)軸上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,點FAB的延長線上,且BF=AB,連接FD,交BC于點E

1)說明△DCE≌△FBE的理由;

2)若EC=3,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)yx0)的圖象與直線ymx交于點C,直線ly4分別交兩函數(shù)圖象于點A1,4)和點B,過點BBDl交反比例函數(shù)圖象于點 D

1)求反比例函數(shù)的解析式;

2)當(dāng)BD2AB時,求點B的坐標(biāo);

3)在(2)的條件下,直接寫出不等式mx的解集.

查看答案和解析>>

同步練習(xí)冊答案