分析 (1)根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)可得∠BAC+∠ACD=180°,再根據(jù)角平分線的定義求出∠EAC+∠ECA=90°,然后求出∠E=90°;
(2)設(shè)延長(zhǎng)AE交DG于點(diǎn)F,根據(jù)平行線的性質(zhì)可得∠BAE=∠AFC,結(jié)合直角的知識(shí)可得∠AFC+∠ECD=90°.再結(jié)合∠MCE=∠ECD得到結(jié)論;
(3)根據(jù)平行線的性質(zhì)得到∠BAC+∠DCP=180°,再結(jié)合三角形內(nèi)角和為180°即可得到結(jié)論.
解答 解(1)∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵AE平分∠BAC,CE平分∠ACD,
∴∠EAC+∠ECA=$\frac{1}{2}$(∠BAC+∠ACD)=90°,
∴∠E=90°;
(2)∠BAE+$\frac{1}{2}$∠MCD=90°,
證明:∵延長(zhǎng)AE交DG于點(diǎn)F,
∵AB∥CD,
∴∠BAE=∠AFC.
∵∠AEC=90°,
∴∠CEF=90°,
∴∠AFC+∠ECD=90°.
∵∠MCE=∠ECD,
∴∠BAE+$\frac{1}{2}$∠MCD=90°,
故答案為∠BAE+$\frac{1}{2}$∠MCD=90°;
(3)∵AB∥CD,
∴∠BAC+∠DCP=180°,
∵∠CPQ+∠CQP+∠DCP=180°,
∴∠CPQ+∠CQP=∠BAC.
點(diǎn)評(píng) 本題考查的是平行線的性質(zhì)以及垂線的知識(shí),解題要掌握兩直線平行,同旁內(nèi)角互補(bǔ),根據(jù)題意作出輔助線是解答(2)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com