【題目】下圖中的方格圖均是由邊長為1的小正方形組成的,現(xiàn)通過圖形變換將圖1中陰影部分的圖形割補(bǔ)成一個正方形。其思想方法是:由于要拼成的正方形的面積為“5(5個小正方形組成),則正方形的邊長為,而。因此,具體做法是:①連結(jié)A1A3、A1A5;②將△A1A2A3A3沿順時針方向旋轉(zhuǎn)90°;③將△A1A5A6A5沿逆時針方向旋轉(zhuǎn)90°;④將小正方形A1A6A7A8先向左平移2個單位,再向上平移1個單位。圖中四邊形A1A3A4A5即是所求作的正方形。仿照此方法將圖2中的陰影部分的圖形割補(bǔ)成正方形。(要求:直接在圖上畫出圖形,并寫出一種具體做法。)

【答案】圖形及做法見詳解.

【解析】

根據(jù)圖形的面積是8,則邊長是2,據(jù)此即可確定.

解:連接BG,把BGFF逆時針旋轉(zhuǎn)90度,然后向上平移一個單位;把ABG沿直線BG翻折180度,然后向上平移1個單位,則四邊形CDEM就是所求的圖形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形OAA1的直角邊OAx軸上,點A1在第一象限,且OA=1,以點A1為直角頂點,OA1為一直角邊作等腰直角三角形OA1A2,再以點A2為直角頂點,OA2為直角邊作等腰直角三角形OA2A3依此規(guī)律,則點A2018的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線ymx24mx+3mm0)與x軸交于A,B兩點(點B在點A右側(cè)).與y軸交點C,與直線lyx+1交于DE兩點,

1)當(dāng)m1時,連接BC,求∠OBC的度數(shù);

2)在(1)的條件下,連接DB、EB,是否存在拋物線在第四象限上一點P,使得SDBESDPE?若存在,求出此時P點坐標(biāo)及PB的長度;若不存在,請說明理由;

3)若以DE為直徑的圓恰好與x軸相切,求此時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=﹣x軸交于A、B兩點,與y軸交于點C,連接AC、BC

1)求線段AC的長;

2)如圖2,E為拋物線的頂點,FAC上方的拋物線上一動點,MN為直線AC上的兩動點(MN的左側(cè)),且MN4,作FPAC于點P,FQy軸交AC于點Q.當(dāng)△FPQ的面積最大時,連接EF、EN、FM,求四邊形ENMF周長的最小值.

3)如圖3,將△BCO沿x軸負(fù)方向平移個單位后得△B'C'O',再將△B'C'O'繞點O'順時針旋轉(zhuǎn)α度,得到△BCO'(其中0°<α180°),旋轉(zhuǎn)過程中直線BC″與直線AC交于點G,與x軸交于點H,當(dāng)△AGH是等腰三角形時,求α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被它的兩條直徑分成了四個分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動轉(zhuǎn)盤,待轉(zhuǎn)盤自動停止后,指針指向一個扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時,稱為轉(zhuǎn)動轉(zhuǎn)盤一次(若指針指向兩個扇形的交線,則不計轉(zhuǎn)動的次數(shù),重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向一個扇形的內(nèi)部為止)

(1)轉(zhuǎn)動轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;

(2)轉(zhuǎn)動轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課外小組的同學(xué)們在社會實踐活動中調(diào)查了20戶家庭萊月的用電量,如表所示:

用電量(千瓦)

120

140

160

180

200

戶數(shù)

2

3

6

7

2

則這20戶家庭該月用電量的眾數(shù)和中位數(shù)、平均數(shù)分別是( )

A. 180160,164B. 160180;164

C. 160,160,164D. 180180,164

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用32m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)ABxm

(1)若花園的面積為252m2,求x的值;

(2)若在P處有一棵樹與墻CD,AD的距離分別是17m6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)-2≤x≤1時,二次函數(shù)y=-x-m2+m2+1有最大值3,則實數(shù)m的值為( 。

A. 2-B. 或-C. -D. -

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦BC=6cm,AC=8cm.若動點P2cm/s的速度從B點出發(fā)沿著B→A的方向運動,點Q1cm/s的速度從A點出發(fā)沿著A→C的方向運動,當(dāng)點P到達(dá)點A時,點Q也隨之停止運動.設(shè)運動時間為t(s),當(dāng)APQ是直角三角形時,t的值為___________

查看答案和解析>>

同步練習(xí)冊答案