【題目】某課外小組的同學(xué)們在社會實(shí)踐活動(dòng)中調(diào)查了20戶家庭萊月的用電量,如表所示:

用電量(千瓦時(shí))

120

140

160

180

200

戶數(shù)

2

3

6

7

2

則這20戶家庭該月用電量的眾數(shù)和中位數(shù)、平均數(shù)分別是( )

A. 180160,164B. 160180;164

C. 160,160,164D. 180,180,164

【答案】A

【解析】

根據(jù)眾數(shù)的定義,中位數(shù)應(yīng)是第10個(gè)和第11個(gè)數(shù)據(jù)的平均數(shù),加權(quán)平均數(shù)的定義計(jì)算平均數(shù).

解:在這一組數(shù)據(jù)中180是出現(xiàn)次數(shù)最多的,故眾數(shù)是180;

將這組數(shù)據(jù)從小到大的順序排列后,處于中間位置的兩個(gè)數(shù)是160,160,那么由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是(160+160÷2160

平均數(shù):×120×2+140×3+160×6+180×7+200×2)=164(千瓦時(shí)).

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過對角線BD中點(diǎn)的直線交AD、BC邊于F、E

1)求證:四邊形BEDF是平行四邊形;

2)當(dāng)四邊形BEDF是菱形時(shí),寫出EFBD的關(guān)系.

3)若∠A60°,AB4,BC6,四邊形BEDF是矩形,求該矩形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+2與y軸交于A點(diǎn),與反比例函數(shù)(x>0)的圖象交于點(diǎn)M,過M作MH⊥x軸于點(diǎn)H,且tan∠AHO=2.

(1)求k的值;

(2)點(diǎn)N(a,1)是反比例函數(shù)(x>0)圖象上的點(diǎn),在x軸上是否存在點(diǎn)P,使得PM+PN最。咳舸嬖,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一天晚上,李明利用燈光下的影子長來測量一路燈D的高度.如圖,當(dāng)在點(diǎn)A處放置標(biāo)桿時(shí),李明測得直立的標(biāo)桿高AM與影子長AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點(diǎn)B處放置同一個(gè)標(biāo)桿,測得直立標(biāo)桿高BN的影子恰好是線段AB,并測得AB1.2m,已知標(biāo)桿直立時(shí)的高為1.8m,求路燈的高CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖中的方格圖均是由邊長為1的小正方形組成的,現(xiàn)通過圖形變換將圖1中陰影部分的圖形割補(bǔ)成一個(gè)正方形。其思想方法是:由于要拼成的正方形的面積為“5(5個(gè)小正方形組成),則正方形的邊長為,而。因此,具體做法是:①連結(jié)A1A3、A1A5;②將△A1A2A3A3沿順時(shí)針方向旋轉(zhuǎn)90°;③將△A1A5A6A5沿逆時(shí)針方向旋轉(zhuǎn)90°;④將小正方形A1A6A7A8先向左平移2個(gè)單位,再向上平移1個(gè)單位。圖中四邊形A1A3A4A5即是所求作的正方形。仿照此方法將圖2中的陰影部分的圖形割補(bǔ)成正方形。(要求:直接在圖上畫出圖形,并寫出一種具體做法。)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某人在山坡坡腳C處測得一座建筑物頂點(diǎn)A的仰角為63.4°,沿山坡向上走到P處再測得該建筑物頂點(diǎn)A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:12.

(1)求此人所在位置點(diǎn)P的鉛直高度.(結(jié)果精確到0.1米)

(2)求此人從所在位置點(diǎn)P走到建筑物底部B點(diǎn)的路程(結(jié)果精確到0.1米)

測傾器的高度忽略不計(jì),參考數(shù)據(jù):tan53°≈,tan63.5°≈2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為6,E,F分別是ABBC邊上的點(diǎn),且∠EDF=45°,將DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到DCM

(1)求證:EF=MF;

(2)AE=2,求FC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD切⊙O于點(diǎn)D,且BDOC,連接AC
1)求證:AC是⊙O的切線;
2)若AB=OC=4,求圖中陰影部分的面積(結(jié)果保留根號和π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一個(gè)三角形,設(shè)其三個(gè)內(nèi)角的度數(shù)分別為x°、y°和z°,若x、y、z滿足x2+y2z2,我們定義這個(gè)三角形為美好三角形.

1)△ABC中,若∠A40°,∠B80°,則△ABC   (填“是”或“不是”)美好三角形;

2)如圖,銳角△ABC是⊙O的內(nèi)接三角形,∠C60°,AC2,⊙O的直徑是2,求證:△ABC是美好三角形;

3)已知△ABC是美好三角形,∠A30°,求∠C的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案