【題目】-2≤x≤1時,二次函數(shù)y=-x-m2+m2+1有最大值3,則實數(shù)m的值為( 。

A. 2-B. 或-C. -D. -

【答案】D

【解析】

求出二次函數(shù)對稱軸為直線x=m,再分m-2-2≤m≤1,m1三種情況,根據(jù)二次函數(shù)的增減性列方程求解即可.

二次函數(shù)y=-x-m2+m2+1,

可化為:y=-x2+2mx+1

故二次函數(shù)的對稱軸為直線x=m,

m-2時,x=-2時二次函數(shù)有最大值,

此時--2-m2+m2+1=3,

解得m=-,與m-2矛盾,故m值不存在;

②當-2≤m≤1時,x=m時,二次函數(shù)有最大值,

此時,m2+1=3

解得m=-,m=(舍去);

③當m1時,x=1時二次函數(shù)有最大值,

此時,-1-m2+m2+1=3

解得m=

綜上所述,m的值為-

故選D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一個學生蕩秋千,秋千鏈子的長度為,當秋千向兩邊擺動時,擺角(指擺到最高位置時的秋千與鉛垂線的夾角)恰好是,則它擺至最高位置時與其擺至最低位置時的高度之差為 ____m.(結(jié)果可以保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下圖中的方格圖均是由邊長為1的小正方形組成的,現(xiàn)通過圖形變換將圖1中陰影部分的圖形割補成一個正方形。其思想方法是:由于要拼成的正方形的面積為“5(5個小正方形組成),則正方形的邊長為,而。因此,具體做法是:①連結(jié)A1A3、A1A5;②將△A1A2A3A3沿順時針方向旋轉(zhuǎn)90°;③將△A1A5A6A5沿逆時針方向旋轉(zhuǎn)90°;④將小正方形A1A6A7A8先向左平移2個單位,再向上平移1個單位。圖中四邊形A1A3A4A5即是所求作的正方形。仿照此方法將圖2中的陰影部分的圖形割補成正方形。(要求:直接在圖上畫出圖形,并寫出一種具體做法。)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為6,E,F分別是ABBC邊上的點,且∠EDF=45°,將DAE繞點D逆時針旋轉(zhuǎn)90°,得到DCM

(1)求證:EF=MF;

(2)AE=2,求FC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,ABAC=2,∠BAC=45°.將△ABC繞點A逆時針旋轉(zhuǎn)α度(0<α<180)得到△ADEB,C兩點的對應點分別為點DE,BDCE所在直線交于點F

(1)當△ABC旋轉(zhuǎn)到圖1位置時,∠CAD   (用α的代數(shù)式表示),∠BFC的度數(shù)為   °;

(2)當α=45時,在圖2中畫出△ADE,并求此時點A到直線BE的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD切⊙O于點D,且BDOC,連接AC
1)求證:AC是⊙O的切線;
2)若AB=OC=4,求圖中陰影部分的面積(結(jié)果保留根號和π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在矩形ABCD中,點EAD上,EC平分∠BED

1)試判斷△BEC是否為等腰三角形,并說明理由.

2)若AB=1,∠ABE=45°,求BC的長.

3)在原圖中畫△FCE,使它與△BEC關(guān)于CE的中點O成中心對稱,此時四邊形BCFE是什么特殊平行四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司從2009年開始投入技術(shù)改造資金,經(jīng)技術(shù)改進后,其產(chǎn)品的生產(chǎn)成本不斷降低,具體數(shù)據(jù)如表:

年度

2009

2010

2011

2012

投入技改資金x(萬元)

2.5

3

4

4.5

產(chǎn)品成本y(萬元/件)

7.2

6

4.5

4

(1)試判斷:從上表中的數(shù)據(jù)看出,y與x符合你學過的哪個函數(shù)模型?請說明理由,并寫出它的解析式.

(2)按照上述函數(shù)模型,若2013年已投入技改資金5萬元

預計生產(chǎn)成本每件比2012年降低多少元?

如果打算在2013年把每件產(chǎn)品的成本降低到3.2萬元,則還需投入技改資金多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在不透明的袋子中有四張標有數(shù)字1,2,3,4的卡片,小明、小華兩人按照各自的規(guī)則玩抽卡片游戲。

小明畫出樹形圖如下:

小華列出表格如下:

第一次

第二次

1

2

3

4

1

(1,1)

(2,1)

(3,1)

(4,1)

2

(1,2)

(2,2)

(4,2)

3

(1,3

(2,3)

(3,3)

(4,3)

4

(1,4)

(2,4)

(3,4)

(4,4)

回答下列問題:

(1)根據(jù)小明畫出的樹形圖分析,他的游戲規(guī)則是:隨機抽出一張卡片后 (填放回不放回),再隨機抽出一張卡片;

(2)根據(jù)小華的游戲規(guī)則,表格中表示的有序數(shù)對為 ;

(3)規(guī)定兩次抽到的數(shù)字之和為奇數(shù)的獲勝,你認為淮獲勝的可能性大?為什么?

查看答案和解析>>

同步練習冊答案