【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用32m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)ABxm

(1)若花園的面積為252m2,求x的值;

(2)若在P處有一棵樹(shù)與墻CD,AD的距離分別是17m6m,要將這棵樹(shù)圍在花園內(nèi)(含邊界,不考慮樹(shù)的粗細(xì)),求花園面積S的最大值.

【答案】118m14m;(2)花園面積的最大值是255平方米.

【解析】

1)根據(jù)AB=x米可知BC=32-x)米,再根據(jù)矩形的面積公式即可得出結(jié)論;
2)根據(jù)P處有一棵樹(shù)與墻CD、AD的距離分別是18米和8米求出x的取值范圍,再根據(jù)(1)中的函數(shù)關(guān)系式即可得出結(jié)論.

解:(1)設(shè)AB=x米,可知BC=32-x)米,根據(jù)題意得:x32-x=252
解這個(gè)方程得:x1=18,x2=14
答:x的長(zhǎng)度18m14m
2)設(shè)周圍的矩形面積為S,
S=x32-x=-x-162+256
∵在P處有一棵樹(shù)與墻CD,AD的距離是17m6米,
6x15
∴當(dāng)x=15時(shí),S最大= -15-162+256=255(平方米).
答:花園面積的最大值是255平方米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)A(﹣1,0),B(4,0),C(0,3)三點(diǎn),D為直線BC上方拋物線上一動(dòng)點(diǎn),DE⊥BCE.

(1)求拋物線的函數(shù)表達(dá)式;

(2)如圖1,求線段DE長(zhǎng)度的最大值;

(3)如圖2,設(shè)AB的中點(diǎn)為F,連接CD,CF,是否存在點(diǎn)D,使得△CDE中有一個(gè)角與∠CFO相等?若存在,求點(diǎn)D的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等邊三角形ABC中,E為直線AB上一點(diǎn),連接ECED與直線BC交于點(diǎn)DEDEC

1)如圖1,AB1,點(diǎn)EAB的中點(diǎn),求BD的長(zhǎng);

2)點(diǎn)EAB邊上任意一點(diǎn)(不與AB邊的中點(diǎn)和端點(diǎn)重合),依題意,將圖2補(bǔ)全,判斷AEBD間的數(shù)量關(guān)系并證明;

3)點(diǎn)E不在線段AB上,請(qǐng)?jiān)趫D3中畫出符合條件的一個(gè)圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校九年級(jí)學(xué)生立定跳遠(yuǎn)水平,隨機(jī)抽取該年級(jí)50名學(xué)生進(jìn)行測(cè)試,并把測(cè)試成績(jī)(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.

學(xué)生立定跳遠(yuǎn)測(cè)試成績(jī)的頻數(shù)分布表

分組

頻數(shù)

1.2≤x<1.6

a

1.6≤x<2.0

12

2.0≤x<2.4

b

2.4≤x<2.8

10

請(qǐng)根據(jù)圖表中所提供的信息,完成下列問(wèn)題:

(1)表中a=   ,b=   ,樣本成績(jī)的中位數(shù)落在   范圍內(nèi);

(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;

(3)該校九年級(jí)共有1000名學(xué)生,估計(jì)該年級(jí)學(xué)生立定跳遠(yuǎn)成績(jī)?cè)?/span>2.4≤x<2.8范圍內(nèi)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OAOD是⊙O半徑.過(guò)A作⊙O的切線,交∠AOD的平分線于點(diǎn)C,連接CD,延長(zhǎng)AO交⊙O于點(diǎn)E,交CD的延長(zhǎng)線于點(diǎn)B

(1)求證:直線CD是⊙O的切線;

(2)如果D點(diǎn)是BC的中點(diǎn),⊙O的半徑為 3cm,求的長(zhǎng)度.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)任意一個(gè)正整數(shù)m,如果,其中n是正整數(shù),則稱m優(yōu)數(shù)nm的最優(yōu)拆分點(diǎn),例如:,則72是一個(gè)優(yōu)數(shù),872的最優(yōu)拆分點(diǎn).

請(qǐng)寫出一個(gè)大于40小于50優(yōu)數(shù)”______,它的最優(yōu)拆分點(diǎn)是______

優(yōu)數(shù)”p2倍與優(yōu)數(shù)”q3倍的差記為,例如:,,則優(yōu)數(shù)”p的最優(yōu)拆分點(diǎn)為優(yōu)數(shù)”q的最優(yōu)拆分點(diǎn)為t,當(dāng)時(shí),求t的值并判斷它是否為優(yōu)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分)閱讀理解:

如圖,如果四邊形ABCD滿足AB=AD,CB=CD,∠B=∠D=90°,那么我們把這樣的四邊形叫做完美箏形

將一張如圖所示的完美箏形紙片ABCD先折疊成如圖所示形狀,再展開(kāi)得到圖,其中CECF為折痕,∠BCE=∠ECF=∠FCD,點(diǎn)B′為點(diǎn)B的對(duì)應(yīng)點(diǎn),點(diǎn)D′為點(diǎn)D的對(duì)應(yīng)點(diǎn),連接EB′,FD′相交于點(diǎn)O

簡(jiǎn)單應(yīng)用:

1)在平行四邊形、矩形、菱形、正方形四種圖形中,一定為完美箏形的是 ;

2)當(dāng)圖中的∠BCD=120°時(shí),∠AEB′= °;

3)當(dāng)圖中的四邊形AECF為菱形時(shí),對(duì)應(yīng)圖中的完美箏形 個(gè)(包含四邊形ABCD).

拓展提升:

4)當(dāng)圖中的∠BCD=90°時(shí),連接AB′,請(qǐng)?zhí)角?/span>∠AB′E的度數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子中,裝有除顏色外都完全相同的4個(gè)紅球和若干個(gè)黃球.

如果從袋中任意摸出一個(gè)球是紅球的概率為,那么袋中有黃球多少個(gè)?

的條件下如果從袋中摸出一個(gè)球記下顏色后放回,再摸出一個(gè)球,用列表或畫樹(shù)狀圖的方法求出兩次摸出不同顏色球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是△ABC的角平分線,過(guò)點(diǎn)DDEBCAB于點(diǎn)E,DFABBC于點(diǎn)F

1)求證:四邊形BEDF為菱形;

2)如果∠A90°,∠C30°,BD6,求菱形BEDF的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案