【題目】如圖,已知正六邊形ABCDEF的邊長為,點(diǎn)G,H,I,J,K,L依次在正六邊形的六條邊上,且AG=BH=CI=DJ=EK=FL,順次連結(jié)G,I,K,和H,J,L,則圖中陰影部分的周長C的取值范圍為( 。
A.6≤C≤6B.3≤C≤3C.3≤C≤6D.3≤C≤6
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O為等邊△ABC的外接圓,AD∥BC,∠ADC=90°,CD交⊙O于點(diǎn)E.
(1)求證:AD是⊙O的切線;
(2)若DE=2,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖已知直線與拋物線y=ax2+bx+c相交于A(﹣1,0),B(4,m)兩點(diǎn),拋物線y=ax2+bx+c交y軸于點(diǎn)C(0,﹣),交x軸正半軸于D點(diǎn),拋物線的頂點(diǎn)為M.
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)P為直線AB下方的拋物線上一動點(diǎn),當(dāng)△PAB的面積最大時(shí),求△PAB的面積及點(diǎn)P的坐標(biāo);
(3)若點(diǎn)Q為x軸上一動點(diǎn),點(diǎn)N在拋物線上且位于其對稱軸右側(cè),當(dāng)△QMN與△MAD相似時(shí),求N點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的邊軸,垂足為點(diǎn),頂點(diǎn)在第二象限,頂點(diǎn)在軸的正半軸上,反比例函數(shù)(,)的圖象同時(shí)經(jīng)過頂點(diǎn),,若點(diǎn)的橫坐標(biāo)為10,,則的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某市九年級學(xué)生的體育成績(成績均為整數(shù)),隨機(jī)抽取了部分學(xué)生的體育成績并分段(A:20.5~22.5;B:22.5~24.5;C:24.5~26.5;D:26.5~28.5;E:28.5~30.5)統(tǒng)計(jì),得到統(tǒng)計(jì)圖、表如圖.
分?jǐn)?shù)段 | A | B | C | D | E | 合計(jì) |
頻數(shù)/人 | 12 | 36 | 84 | b | 48 | c |
頻率 | 0.05 | a | 0.35 | 0.25 | 0.20 | 1 |
根據(jù)上面的信息,回答下列問題:
(1)統(tǒng)計(jì)表中,a= ,b= ,c= ;將頻數(shù)分布直方圖補(bǔ)充完整.
(2)小明說:“這組數(shù)據(jù)的眾數(shù)一定在C中.”你認(rèn)為小明的說法正確嗎? (選填“正確”或“錯誤”).
(3)若成績在27分及以上定為優(yōu)秀,則該市30000名九年級學(xué)生中體育成績?yōu)閮?yōu)秀的學(xué)生人數(shù)約有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點(diǎn)A,B,C是⊙O上的三點(diǎn),以AB,BC為鄰邊作ABCD,延長AD,交⊙O于點(diǎn)E,過點(diǎn)A作CE的平行線,交CD的延長線于F.
(1)求證:FD=FA;
(2)如圖2,連接AC,若∠F=40°,且AF恰好是⊙O的切線,求∠CAB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 與 軸交于和,與 軸交于 點(diǎn),點(diǎn)關(guān)于拋物線的對稱軸的對稱點(diǎn)為點(diǎn).
(1)求此拋物線的解析式和對稱軸.
(2)如圖 2,當(dāng)點(diǎn)在拋物線的對稱軸上運(yùn)動時(shí),在直線上是否存在點(diǎn),使得以點(diǎn)、、、為頂點(diǎn)的四邊形為平行四邊形?若存在,請求出點(diǎn) 的坐標(biāo);若不存在,請說明理由.
(3)如圖 3,當(dāng)點(diǎn)、、三點(diǎn)共圓時(shí),請求出該圓圓心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,CD∥AB,
(1)如圖1,證明:AC=BD;
(2)如圖2,連接CO并延長交⊙O于點(diǎn)E,OP⊥AD,垂足為P,證明:BE=2OP;
(3)如圖3,在(2)的條件下,連接DO,點(diǎn)F為DO延長線上一點(diǎn),若∠AFO+∠ABE=180°,過點(diǎn)B作BG⊥OD,垂足為G,點(diǎn)N為上一點(diǎn),AM⊥EN,垂足為M,若GF=4,OP=,AM=2NE,求AM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)的圖象和一次函數(shù)的圖象都過點(diǎn),過點(diǎn)P作y軸的垂線,垂足為A,O為坐標(biāo)原點(diǎn),的面積為1.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)設(shè)反比例函數(shù)圖象與一次函數(shù)圖象的另一交點(diǎn)為M,過M作x軸的垂線,垂足為B,求五邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com