【題目】如圖,在正方形ABCD中,點E,F將對角線AC三等分,且AC=9,點P在正方形的邊上,則滿足PE+PF=8的點P的個數是( )
A.8B.6C.4D.0
【答案】A
【解析】
作點F關于BC的對稱點M,連接FM交BC于點N,連接EM,交BC于點H,可得點H到點E和點F的距離之和最小,可求最小值,即可求解.
如圖,作點F關于BC的對稱點M,連接FM交BC于點N,連接EM,交BC于點H,
點E,F將對角線AC三等分,且AC=9,
∴EC=6,FC=AE=3,
∵點M與點F關于BC對稱,
∴CF=CM=3,,
∴,
∴,
則線段BC存在點H到點E和點F的距離之和最小為,
在點H右側,當點P與點C重合時,則PE+PF=9,
∴點P在CH上時,;
在點H左側,當點P與點B重合時,由已知可得,,,
∵AB=AC,CF=AE,,
∴,
∴,
∴,
∴點P在BH上時,,
∴在線段BC上點H的左右兩邊各有一個點P使得PE+PF=8,同理在線段AB,AD,CD上都存在兩個點使得PE+PF=8.
即共有8個點P滿足PE+PF=8.
故選:A.
科目:初中數學 來源: 題型:
【題目】某超市計劃在“十周年”慶典當天開展購物抽獎活動,凡當天在該超市購物的顧客,均有一次抽獎的機會,抽獎規(guī)則如下:將如圖所示的圓形轉盤平均分成四個扇形,分別標上1,2,3,4四個數字,抽獎者連續(xù)轉動轉盤兩次,當每次轉盤停止后指針所指扇形內的數為每次所得的數(若指針指在分界線時重轉);當兩次所得數字之和為8時,返現金20元;當兩次所得數字之和為7時,返現金15元;當兩次所得數字之和為6時返現金10元.
(1)試用樹狀圖或列表的方法表示出一次抽獎所有可能出現的結果;
(2)某顧客參加一次抽獎,能獲得返還現金的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:二次函數y=x2+2mx+2n,交x軸于A,B兩點(A在B的左側)
(1)當m=3時,n=4時, ①求A、B兩點坐標;②將拋物線向右平移k個單位后交x軸于M、N(M在N的左側),若B、M三等分AN,直接寫出k的值;
(2)當m=1時,若線段AB上有且只有5個點的橫坐標為整數,求n的取值范圍;
(3)記A(x1,0)、B(x2,0),當m、n都是奇數時,x1、x2能否是有理數?若能,請舉例驗證,若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,平面直角坐標系中,等腰的底邊在軸上,,頂點在的正半軸上,,一動點從出發(fā),以每秒1個單位的速度沿向左運動,到達的中點停止.另一動點從點出發(fā),以相同的速度沿向左運動,到達點停止.已知點、同時出發(fā),以為邊作正方形,使正方形和在的同側.設運動的時間為秒().
(1)當點落在邊上時,求的值;
(2)設正方形與重疊面積為,請問是存在值,使得?若存在,求出值;若不存在,請說明理由;
(3)如圖2,取的中點,連結,當點、開始運動時,點從點出發(fā),以每秒個單位的速度沿運動,到達點停止運動.請問在點的整個運動過程中,點可能在正方形內(含邊界)嗎?如果可能,求出點在正方形內(含邊界)的時長;若不可能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“三等分角”大約是在公元前五世紀由古希臘人提出來的,借助如圖所示的“三等分角儀”能三等分任一角.這個三等分角儀由兩根有糟的棒OA、OB組成.兩根棒在O點相連并可繞O轉動,C點固定,OC=CD=DE,點D,E在槽中滑動,若∠BDE=84°.則∠AOB是______°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b的圖象分別與x軸,y軸的正半軸分別交于點A,B,AB=2,∠OAB=45°
(1)求一次函數的解析式;
(2)如果在第二象限內有一點C(a,);試用含有a的代數式表示四邊形ABCO的面積,并求出當△ABC的面積與△ABO的面積相等時a的值;
(3)在x軸上,是否存在點P,使△PAB為等腰三角形?若存在,請直接寫出所有符合條件的點P坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線:與軸交于,兩點,直線與軸交于點,與的對稱軸交于點,與交于點,拋物線的對稱軸與交于點.
(1)求的值;
(2)點能否與點關于軸的對稱點重合?若認為能,請求出的值;若認為不能,說明理由;
(3)小林研究了拋物線的解析式后,得到了如下的結論:因為可以取任意實數,所以點可以在軸上任意移動,即點可以到達軸的任何位置,你認為他說的有道理嗎?說說你的理由;
(4)當拋物線與直線有兩個公共點時,直接寫出適合條件的的最大整數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某大學生利用暑假40天社會實踐參與了一家網店經營,了解到一種新型商品成本為20元/件,第x天銷售量為p件,銷售單價為q元,經跟蹤調查發(fā)現,這40天中p與x的關系保持不變,前20天(包含第20天),q與x的關系滿足關系式q=30+ax;從第21天到第40天中,q是基礎價與浮動價的和,其中基礎價保持不變,浮動價與x成反比.且得到了表中的數據.
X(天) | 10 | 21 | 35 |
q(元/件) | 35 | 45 | 35 |
(1)請直接寫出a的值為 ;
(2)從第21天到第40天中,求q與x滿足的關系式;
(3)若該網店第x天獲得的利潤y元,并且已知這40天里前20天中y與x的函數關系式為y=﹣x2+15x+500
i請直接寫出這40天中p與x的關系式為: ;
ii求這40天里該網店第幾天獲得的利潤最大?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com