【題目】如圖1,平面直角坐標系中,等腰的底邊軸上,,頂點的正半軸上,,一動點出發(fā),以每秒1個單位的速度沿向左運動,到達的中點停止.另一動點從點出發(fā),以相同的速度沿向左運動,到達點停止.已知點、同時出發(fā),以為邊作正方形,使正方形的同側(cè).設(shè)運動的時間為秒().

1)當點落在邊上時,求的值;

2)設(shè)正方形重疊面積為,請問是存在值,使得?若存在,求出值;若不存在,請說明理由;

3)如圖2,取的中點,連結(jié),當點、開始運動時,點從點出發(fā),以每秒個單位的速度沿運動,到達點停止運動.請問在點的整個運動過程中,點可能在正方形內(nèi)(含邊界)嗎?如果可能,求出點在正方形內(nèi)(含邊界)的時長;若不可能,請說明理由.

【答案】1t=1;(2)存在,,理由見解析;(3)可能,理由見解析

【解析】

1)用待定系數(shù)法求出直線AC的解析式,根據(jù)題意用t表示出點H的坐標,代入求解即可;

2)根據(jù)已知,當點F運動到點O停止運動前,重疊最大面積是邊長為1的正方形的面積,即不存在t,使重疊面積為,故t4,用待定系數(shù)法求出直線AB的解析式,求出點H落在BC邊上時的t值,求出此時重疊面積為,進一步求出重疊面積關(guān)于t的表達式,代入解t的方程即可解得t值;

3)由已知求得點D21),AC=OD=OC=OA=,結(jié)合圖形分情況討論即可得出符合條件的時長.

1)由題意,A(02),B(-40),C(4,0),

設(shè)直線AC的函數(shù)解析式為y=kx+b

將點A、C坐標代入,得:

,解得:,

∴直線AC的函數(shù)解析式為,

當點落在邊上時,點E(3-t,0),點H3-t1),

將點H代入,得:

,解得:t=1;

2)存在,,使得

根據(jù)已知,當點F運動到點O停止運動前,重疊最大面積是邊長為1的正方形的面積,即不存在t,使重疊面積為,故t4

設(shè)直線AB的函數(shù)解析式為y=mx+n,

將點AB坐標代入,得:

,解得:,

∴直線AC的函數(shù)解析式為

t4時,點E3-t,0)點H3-tt-3),G(0,t-3),

當點H落在AB邊上時,將點H代入,得:

,解得:

此時重疊的面積為,

,∴t5,

如圖1,設(shè)GHABSEHABT,

y=t-3代入得:,

解得:x=2t-10,

∴點S(2t-10t-3)

x=3-t代入得:,

∴點T,

AG=5-t,SG=10-2tBE=7-t,ET=,

,

所以重疊面積S==4--=,

=得:,5(舍去),

;

3)可能,≤t≤1t=4

∵點DAC的中點,且OA=2,OC=4,

∴點D21),AC=OD=OC=OA=,

易知M點在水平方向以每秒是4個單位的速度運動;

0t時,M在線段OD上,H未到達D點,所以M與正方形不相遇;

t1時, +÷1+4=秒,

M與正方形相遇,經(jīng)過1+4=秒后,M點不在正方行內(nèi)部,則

t=1時,由(1)知,點F運動到原E點處,M點到達C處;

1≤t≤2時,當t=1+1÷4-1=秒時,點M追上G點,經(jīng)過4-1=秒,點都在正方形內(nèi)(含邊界),

t=2時,點M運動返回到點O處停止運動,

t=3時,點E運動返回到點O, t=4時,點F運動返回到點O,

時,點都在正方形內(nèi)(含邊界),

綜上,當時,點可能在正方形內(nèi)(含邊界).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為了了解學生關(guān)注熱點新聞的情況,“兩會”期間,小明對班級同學一周內(nèi)收看“兩會”新聞的次數(shù)情況作了調(diào)查,調(diào)查結(jié)果統(tǒng)計如圖所示(其中男生收看次的人數(shù)沒有標出).

根據(jù)上述信息,解答下列各題:

×

(1)該班級女生人數(shù)是__________,女生收看“兩會”新聞次數(shù)的中位數(shù)是________;

(2)對于某個群體,我們把一周內(nèi)收看某熱點新聞次數(shù)不低于次的人數(shù)占其所在群體總?cè)藬?shù)的百分比叫做該群體對某熱點新聞的“關(guān)注指數(shù)”.如果該班級男生對“兩會”新聞的“關(guān)注指數(shù)”比女生低,試求該班級男生人數(shù);

(3)為進一步分析該班級男、女生收看“兩會”新聞次數(shù)的特點,小明給出了男生的部分統(tǒng)計量(如表).

統(tǒng)計量

平均數(shù)(次)

中位數(shù)(次)

眾數(shù)(次)

方差

該班級男生

根據(jù)你所學過的統(tǒng)計知識,適當計算女生的有關(guān)統(tǒng)計量,進而比較該班級男、女生收看“兩會”新聞次數(shù)的波動大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠ACB90°DAB上的一點,以CD為直徑的⊙OACE,連接BECDP,交⊙OF,連接DF,∠ABC=∠EFD

(1)求證:AB與⊙O相切;

(2)AD4,BD6,則⊙O的半徑= ;

(3)PC2PF,BFa,求CP(a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,在平面直角坐標系中,拋物線軸交于點和點,與軸交于點

1)求拋物線的表達式;

2)如圖2,將拋物線先向左平移1個單位,再向下平移3個單位,得到拋物線,若拋物線與拋物線相交于點,連接,

①求點的坐標;

②判斷的形狀,并說明理由;

3)在(2)的條件下,拋物線上是否存在點,使得為等腰直角三角形,若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,在第一象限,且軸.直線從原點出發(fā)沿軸正方向平移.在平移過程中,直線被截得的線段長度與直線在軸上平移的距離的函數(shù)圖象如圖2所示.那么的面積為(

A.3B.C.6D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E,F將對角線AC三等分,且AC9,點P在正方形的邊上,則滿足PE+PF8的點P的個數(shù)是( 。

A.8B.6C.4D.0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某鎮(zhèn)的一種特產(chǎn)由于運輸原因,長期只能在當?shù)劁N售.當?shù)卣畬υ撎禺a(chǎn)的銷售投資收益為:每投入x萬元,可獲得利潤(萬元).當?shù)卣當M在十三規(guī)劃中加快開發(fā)該特產(chǎn)的銷售,其規(guī)劃方案為:在規(guī)劃前后對該項目每年最多可投入100萬元的銷售投資,在實施規(guī)劃5年的前兩年中,每年都從100萬元中撥出50萬元用于修建一條公路,兩年修成,通車前該特產(chǎn)只能在當?shù)劁N售;公路通車后的3年中,該特產(chǎn)既在本地銷售,也在外地銷售.在外地銷售的投資收益為:每投入x萬元,可獲利潤(萬元).

1)若不進行開發(fā),求5年所獲利潤的最大值是多少?

2)若按規(guī)劃實施,求5年所獲利潤(扣除修路后)的最大值是多少?

3)根據(jù)(1)、(2)該方案是否具有實施價值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABO在直角坐標系中,ABx軸于點B,AO=10,sin∠AOB=

(1)若反比例函數(shù)y=(x>0)的圖象經(jīng)過AO的中點C,求k的值;

(2)在(1)的條件下,若反比例函數(shù)y=(x>0)的圖象與AB交于點D,當點C,D位于直線l:y=﹣x+b的異側(cè)時,求b的取值范圍;

(3)若點D關(guān)于y軸的對稱點為E,當反比例函數(shù)y=的圖象和線段AE有公共點時,直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地一種商品的需求量(萬件)與商品價格(元/件)存在一次函數(shù)關(guān)系,且價格為10/件時,需求量是50萬件;當價格是20/件時,需求量是40萬件,該商品的供應(yīng)量(萬件)與商品的價格(元/件)的函數(shù)關(guān)系如圖所示.

1)求關(guān)于的函數(shù)關(guān)系式,并在坐標系中畫出它的圖象;

2)要使商品價格相對穩(wěn)定,需保持供應(yīng)量與需求量的大致平衡(簡稱供需平衡),你認為商品的價格定在每件多少元時,供需最平衡;商品價格是每件多少元時,供大于求?

3)當市場供應(yīng)量大于需求量的時,政府就會發(fā)出預(yù)警,那么政府發(fā)出預(yù)警時,商品的最低價格是每件多少元?(精確到元)

查看答案和解析>>

同步練習冊答案