【題目】列方程解應(yīng)用題:

為宣傳社會主義核心價值觀,某社區(qū)居委會計劃制作1200個大小相同的宣傳欄.現(xiàn)有甲、乙兩個廣告公司都具備制作能力,居委會派出相關(guān)人員分別到這兩個廣告公司了解情況,獲得如下信息:

信息一:甲公司單獨制作完成這批宣傳欄比乙公司單獨制作完成這批宣傳欄多用10天;

信息二:乙公司每天制作的數(shù)量是甲公司每天制作數(shù)量的1.2倍.

根據(jù)以上信息,求甲、乙兩個廣告公司每天分別能制作多少個宣傳欄?

【答案】甲廣告公司每天能制作20個宣傳欄,乙廣告公司每天能制作24個宣傳欄.

【解析】

設(shè)甲廣告公司每天能制作x個宣傳欄,則乙廣告公司每天能制作1.2x個宣傳欄,然后根據(jù)甲公司單獨制作完成這批宣傳欄比乙公司單獨制作完成這批宣傳欄多用10列出方程求解即可.

解:設(shè)甲廣告公司每天能制作x個宣傳欄,則乙廣告公司每天能制作1.2x個宣傳欄.

根據(jù)題意得:

解得:x=20.

經(jīng)檢驗:x=20是原方程的解且符合實際問題的意義.

1.2x=1.2×20=24.

答:甲廣告公司每天能制作20個宣傳欄,乙廣告公司每天能制作24個宣傳欄.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點M為銳角三角形ABC內(nèi)任意一點,連接AM、BM、CM.以AB為一邊向外作等邊三角形△ABE,將BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接EN.

(1)求證:△AMB≌△ENB;

(2)若AM+BM+CM的值最小,則稱點M△ABC的費馬點.若點M△ABC的費馬點,試求此時∠AMB、∠BMC、∠CMA的度數(shù);

(3)小翔受以上啟發(fā),得到一個作銳角三角形費馬點的簡便方法:如圖,分別以△ABCAB、AC為一邊向外作等邊△ABE和等邊△ACF,連接CE、BF,設(shè)交點為M,則點M即為△ABC的費馬點.試說明這種作法的依據(jù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某劇院舞臺上的照明燈P射出的光線成“錐體”,其“錐體”面圖的“錐角”是60°.已知舞臺ABCD是邊長為6m的正方形.要使燈光能照射到整個舞臺,則燈P的懸掛高度是( 。

A.3m
B.3m
C.4m
D.m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,路燈下一墻墩(用線段AB表示)的影子是BC,小明(用線段DE表示)的影子是EF,在M處有一棵大樹,它在這個路燈下的影子是MN.
(1)在圖中畫出路燈的位置并用點P表示;
(2)在圖中畫出表示大樹的線段MQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】)已知,AB和DE是直立在地面上的兩根立柱,AB=6m,某一時刻AB在陽光下的投影BC=4m.
(1)請你在圖中畫出此時DE在陽光下的投影;
(2)在測量AB的投影時,同時測量出DE在陽光下的投影長為8m,請你計算DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBC于點D,AE平分∠BAC,∠B70°,∠C30°.求:

(1)BAE的度數(shù);

(2)DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知∠C=90°,BC=6,AC=8,則它的內(nèi)切圓半徑是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=120°,AB=AC,點M、N在邊BC上,且∠MAN=60°.若BM=2,CN=4,則MN的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程組解應(yīng)用題

為了保護(hù)環(huán)境,深圳某公交公司決定購買一批共10臺全新的混合動力公交車,現(xiàn)有A、B兩種型號,其中每臺的價格,年省油量如下表:

A

B

價格(萬元/臺)

a

b

節(jié)省的油量(萬升/年)

2.4

2

經(jīng)調(diào)查,購買一臺A型車比購買一臺B型車多20萬元,購買2A型車比購買3B型車少60萬元.

1)請求出ab;

2)若購買這批混合動力公交車每年能節(jié)省22.4萬汽油,求購買這批混合動力公交車需要多少萬元?

查看答案和解析>>

同步練習(xí)冊答案