【題目】如圖,在△ABC中,∠BAC=120°,AB=AC,點(diǎn)M、N在邊BC上,且∠MAN=60°.若BM=2,CN=4,則MN的長(zhǎng)為_____.
【答案】2
【解析】
利用旋轉(zhuǎn)作△APC,連接PC,根據(jù)旋轉(zhuǎn)得:△ABM≌△ACP,PC=BM=2,證明△MAN≌△PAN,則MN=PN,作高線PD,利用勾股定理計(jì)算PD和PN的長(zhǎng),可得結(jié)論.
∵∠BAC=120°,AB=AC,
∴△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°至△APC,連接PN,
∴△ABM≌△APC,
∴∠B=∠ACP=30°,PC=BM=2,∠BAM=∠CAP,
∴∠NCP=60°,
∴∠CPD=30°.
∵∠MAN=60°,
∴∠BAM+∠NAC=∠NAC+∠CAP=60°=∠MAN,
∵AM=AP,AN=AN,
∴△MAN≌△PAN,
∴MN=PN,
過(guò)點(diǎn)P作BC的垂線,垂足為D,
∴CD=PC=1,DN=CN﹣CD=4﹣1=3,
∴PD=,
∴PN===2,
∴MN=PN=2.
故答案為:2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
國(guó)際比賽的足球場(chǎng)長(zhǎng)在100m到110m之間,寬在64m到75m之間,為了迎接2015年的亞洲杯,某地建設(shè)了一個(gè)長(zhǎng)方形的足球場(chǎng),其長(zhǎng)是寬的1.5倍,面積是7560m2.請(qǐng)你判斷這個(gè)足球場(chǎng)能用于國(guó)際比賽嗎?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題:
為宣傳社會(huì)主義核心價(jià)值觀,某社區(qū)居委會(huì)計(jì)劃制作1200個(gè)大小相同的宣傳欄.現(xiàn)有甲、乙兩個(gè)廣告公司都具備制作能力,居委會(huì)派出相關(guān)人員分別到這兩個(gè)廣告公司了解情況,獲得如下信息:
信息一:甲公司單獨(dú)制作完成這批宣傳欄比乙公司單獨(dú)制作完成這批宣傳欄多用10天;
信息二:乙公司每天制作的數(shù)量是甲公司每天制作數(shù)量的1.2倍.
根據(jù)以上信息,求甲、乙兩個(gè)廣告公司每天分別能制作多少個(gè)宣傳欄?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高服務(wù)質(zhì)量,某賓館決定對(duì)甲、乙兩種套房進(jìn)行星級(jí)提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬(wàn)元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬(wàn)元,乙種套房費(fèi)用為700萬(wàn)元.
(1)甲、乙兩種套房每套提升費(fèi)用各多少萬(wàn)元?
(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬(wàn)元,但不超過(guò)2096萬(wàn)元,且所籌資金全部用于甲、乙種套房星級(jí)提升,市政府對(duì)兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?
(3)在(2)的條件下,根據(jù)市場(chǎng)調(diào)查,每套乙種套房的提升費(fèi)用不會(huì)改變,每套甲種套房提升費(fèi)用將會(huì)提高a萬(wàn)元(a>0),市政府如何確定方案才能使費(fèi)用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某公共汽車線路收支差額y(萬(wàn)元)與乘客量x(萬(wàn)人)的函數(shù)圖象(注:收支差額=票價(jià)總收入﹣運(yùn)營(yíng)成本).目前這條線路虧損,為了扭虧,經(jīng)市場(chǎng)調(diào)研,公交公司決定改革:降低運(yùn)營(yíng)成本,同時(shí)適當(dāng)提高票價(jià).則改革后y與x的函數(shù)圖象可能是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)觀察一列數(shù)2,4,8,16,32,…,發(fā)現(xiàn)從第二項(xiàng)開(kāi)始,每一項(xiàng)與前一項(xiàng)之比是一個(gè)常數(shù),這個(gè)常數(shù)是________;根據(jù)此規(guī)律,如果an(n為正整數(shù))表示這個(gè)數(shù)列的第n項(xiàng),那么a18=________,an=________.
(2)欲求1+3+32+33+…+320的值,可令
S=1+3+32+33+…+320,①
將①兩邊同乘3,得__________________,②
由②減去①,得S=____________.
(3)用由特殊到一般的方法知:若數(shù)列a1,a2,a3,…,an,從第二項(xiàng)開(kāi)始每一項(xiàng)與前一項(xiàng)之比的常數(shù)為q,則an=________(用含a1,q,n的代數(shù)式表示).如果這個(gè)常數(shù)q≠1,求a1+a2+a3+…+an的值(用含a1,q,n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形都是由同樣大小的⊙按一定規(guī)律所組成的,其中第1個(gè)圖形中一共有5個(gè)⊙,第2個(gè)圖形中一共有8個(gè)⊙,第3個(gè)圖形中一共有11個(gè)⊙,第4個(gè)圖形中一共有14個(gè)⊙,…,按此規(guī)律排列,第1001個(gè)圖形中基本圖形的個(gè)數(shù)為( 。
A. 2998 B. 3001 C. 3002 D. 3005
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA、PB是⊙O的切線,CD切⊙O于點(diǎn)E,△PCD的周長(zhǎng)為12,∠APB=60°.求:
(1)PA的長(zhǎng);
(2)∠COD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛轎車在高速公路上勻速行駛.它在經(jīng)過(guò)如下圖所示的標(biāo)志牌下時(shí).速度已達(dá)40m/s,并仍以此速度在向前開(kāi)行.標(biāo)志牌告訴我們的信息是什么?這輛車是否違反了交通法規(guī)?為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com