【題目】某公司銷售一種進(jìn)價為20 (元/個)的計算器,其銷售量y (萬個)與銷售價格x (元/個)之間為一次函數(shù)關(guān)系,其變化如下表:

價格x (元/個)

30

50

銷售量y (萬個)

5

3

同時,銷售過程中的其他開支(不含進(jìn)價)總計40萬元.若該公司要獲得40萬元的凈利潤,且盡可能讓顧客得到實(shí)惠,那么銷售價格應(yīng)定為多少?
(注:凈利潤=總銷售額﹣總進(jìn)價﹣其他開支)

【答案】解:設(shè)y與x的解析式為:y=ax+b,

,

解得: ,

∴y=﹣0.1x+8,

根據(jù)題意,得:(x﹣20)(﹣0.1x+8)﹣40=40,

∴x1=40,x2=60,

∵盡可能讓顧客得到實(shí)惠,

∴價格應(yīng)定為40元.

答:價格應(yīng)定為40元.


【解析】利用待定系數(shù)法先求出銷售量y (萬個)與銷售價格x (元/個)之間為一次函數(shù)關(guān)系,然后根據(jù)等量關(guān)系:凈利潤=總銷售額﹣總進(jìn)價﹣其他開支,列出一元二次方程進(jìn)行求解,此題中根據(jù)題意"且盡可能讓顧客得到實(shí)惠"即價格要盡可能的低,所以要舍去其中的一個答案。
【考點(diǎn)精析】掌握確定一次函數(shù)的表達(dá)式是解答本題的根本,需要知道確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為(4,1)的拋物線交y軸于點(diǎn)A,交x軸于B,C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),已知C點(diǎn)坐標(biāo)為(6,0).

(1)求此拋物線的解析式;
(2)已知點(diǎn)P是拋物線上的一個動點(diǎn),且位于A,C兩點(diǎn)之間.問:當(dāng)點(diǎn)P運(yùn)動到什么位置時,△PAC的面積最大?求出△PAC的最大面積;
(3)連接AB,過點(diǎn)B作AB的垂線交拋物線于點(diǎn)D,以點(diǎn)C為圓心的圓與拋物線的對稱軸l相切,先補(bǔ)全圖形,再判斷直線BD與⊙C的位置關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+c,當(dāng)2<x<5時,y隨x的增大而減小,則實(shí)數(shù)b的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知 A0,a),Bb,0),Cbc)三點(diǎn),其中a,b,c滿足關(guān)系式:

1)求A,B,C三點(diǎn)的坐標(biāo);

2)如果在第二象限內(nèi)有一點(diǎn)Pm),若四邊形ABOP的面積與三角形ABC 的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段a和射線OA,射線OA上有點(diǎn)B

1)用圓規(guī)和直尺在射線OA上作線段CD,使點(diǎn)BCD的中點(diǎn),點(diǎn)C在點(diǎn)B的左邊,且BC=a.(不用寫作法,保留作圖痕跡)

2)在(1)的基礎(chǔ)上,若OB=12cm,OC=5cm,求線段OD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),二次函數(shù)y=x2+c的圖象拋物線交x軸于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,﹣3).

(1)求∠ABC的度數(shù);
(2)若點(diǎn)D是第四象限內(nèi)拋物線上一點(diǎn),△ADC的面積為 ,求點(diǎn)D的坐標(biāo);
(3)若將△OBC繞平面內(nèi)某一點(diǎn)順時針旋轉(zhuǎn)60°得到△O′B′C′,點(diǎn)O′,B′均落在此拋物線上,求此時O′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,直線AB、CD相交于點(diǎn)O,OEOC,OF平分∠AOE.

1)若,則∠AOF的度數(shù)為______

2)若,求∠BOC的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù) 是常數(shù)).
(1)求證:不論 為何值,該函數(shù)的圖象與x軸沒有公共點(diǎn);
(2)把該函數(shù)的圖象沿 軸向下平移多少個單位長度后,得到的函數(shù)的圖象與 軸只有一個公共點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CDAB,OE平分∠AODOFOE,OGCD,∠CDO50°,則下列結(jié)論:

AOE65°;② OF平分∠BOD;③ GOE=∠DOF;④ AOE=∠GOD,其中正確結(jié)論的個數(shù)是(

A. 4B. 3C. 2D. 1

查看答案和解析>>

同步練習(xí)冊答案