【題目】已知:如圖,直線AB、CD相交于點(diǎn)O,OE⊥OC,OF平分∠AOE.
(1)若,則∠AOF的度數(shù)為______;
(2)若,求∠BOC的度數(shù)。
【答案】(1)(2)
【解析】
(1)根據(jù)對頂角的性質(zhì)得到∠AOD=∠BOC=60°,根據(jù)垂直的定義得到∠DOE=90°,根據(jù)角平分線的定義即可得到結(jié)論;
(2)由垂直的定義得到∠DOE=∠COE=90°,根據(jù)角平分線的定義得到∠AOE=2∠EOF=180°-2x°,根據(jù)對頂角的性質(zhì)即可得到結(jié)論.
∵∠AOD=∠BOC=60°,
∵OE⊥OC于點(diǎn)O,
∴∠DOE=90°,
∴∠AOE=30°,
∵OF平分∠AOE,
∴∠AOF= ∠AOE=15°,
故答案為:15°;
(2)∵OE⊥OC于點(diǎn)O,
∴∠COE=∠DOE=90°,
∵∠COF=x°,
∴∠EOF=x°90°,
∵OF平分∠AOE,
∴∠AOE=2∠EOF=2x°180°,
∴∠AOD=90°∠AOE=270°2x°,
∴∠BOC=∠AOD=270°2x°.
故答案為:270°2x°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長為( )
A.2
B.2
C.2
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的口袋中,放有三個(gè)標(biāo)號分別為1,2,3的質(zhì)地、大小都相同的小球.任意摸出一個(gè)小球,記為x,再從剩余的球中任意摸出一個(gè)小球,又記為y,得到點(diǎn)(x,y).
(1)用畫樹狀圖或列表等方法求出點(diǎn)(x,y)的所有可能情況;
(2)求點(diǎn)(x,y)在二次函數(shù)y=ax2﹣4ax+c(a≠0)圖象的對稱軸上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司銷售一種進(jìn)價(jià)為20 (元/個(gè))的計(jì)算器,其銷售量y (萬個(gè))與銷售價(jià)格x (元/個(gè))之間為一次函數(shù)關(guān)系,其變化如下表:
價(jià)格x (元/個(gè)) | … | 30 | 50 | … |
銷售量y (萬個(gè)) | … | 5 | 3 | … |
同時(shí),銷售過程中的其他開支(不含進(jìn)價(jià))總計(jì)40萬元.若該公司要獲得40萬元的凈利潤,且盡可能讓顧客得到實(shí)惠,那么銷售價(jià)格應(yīng)定為多少?
(注:凈利潤=總銷售額﹣總進(jìn)價(jià)﹣其他開支)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線:與直線:交于點(diǎn),與y軸交于點(diǎn),與x軸交于點(diǎn)C.
求直線的函數(shù)表達(dá)式;
求的面積;
在平面直角坐標(biāo)系中有一點(diǎn),使得,請求出點(diǎn)P的坐標(biāo);
點(diǎn)M為直線上的動(dòng)點(diǎn),過點(diǎn)M作y軸的平行線,交于點(diǎn)N,點(diǎn)Q為y軸上一動(dòng)點(diǎn),且為等腰直角三角形,請直接寫出滿足條件的點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,A、B、C三地依次在一直線上,兩輛汽車甲、乙分別從A、B兩地同時(shí)出發(fā)駛向C地,如圖②,是兩輛汽車行駛過程中到C地的距離s(km)與行駛時(shí)間t(h)的關(guān)系圖象,其中折線段EF﹣FG是甲車的圖象,線段OM是乙車的圖象.
(1)圖②中,a的值為 ;點(diǎn)M的坐標(biāo)為 ;
(2)當(dāng)甲車在乙車與B地的中點(diǎn)位置時(shí),求行駛的時(shí)間t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BO,CO分別平分∠ABC和∠ACB
(1)若∠A=60°,求∠BOC;
(2)若∠A=100°,120°,∠BOC又是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D、E、F分別為BC、AD、BE的中點(diǎn),若△BFD的面積為6,則 △ABC的面積等于_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2011年長江中下游地區(qū)發(fā)生了特大旱情.為抗旱保豐收,某地政府制定了農(nóng)戶投資購買抗旱設(shè)備的補(bǔ)貼辦法,其中購買Ⅰ型、Ⅱ型抗旱設(shè)備投資的金額與政府補(bǔ)的額度存在下表所示的函數(shù)對應(yīng)關(guān)系.
(1)分別求y1和y2的函數(shù)解析式;
(2)有一農(nóng)戶同時(shí)對Ⅰ型、Ⅱ型兩種設(shè)備共投資10萬元購買,請你設(shè)計(jì)一個(gè)能獲得最大補(bǔ)貼金額的方案,并求出按此方案能獲得的最大補(bǔ)貼金額.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com