【題目】如圖,E、F、G、H分別為矩形ABCD的邊AB、BC、CD、DA的中點(diǎn),連接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,則AB的長(zhǎng)為__________.
【答案】2
【解析】連接BD.由△ADG∽△GCF,設(shè)CF=BF=a,CG=DG=b,可得,推出,可得b=a,在Rt△GCF中,利用勾股定理求出b,即可解決問(wèn)題;
如圖,連接BD.
∵四邊形ABCD是矩形,
∴∠ADC=∠DCB=90°,AC=BD=,
∵CG=DG,CF=FB,
∴GF=BD=,
∵AG⊥FG,
∴∠AGF=90°,
∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,
∴∠DAG=∠CGF,
∴△ADG∽△GCF,設(shè)CF=BF=a,CG=DG=b,
∴,
∴,
∴b2=2a2,
∵a>0.b>0,
∴b=a,
在Rt△GCF中,3a2=,
∴a=,
∴AB=2b=2.
故答案為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在全市中學(xué)運(yùn)動(dòng)會(huì)800m比賽中,甲、乙兩名運(yùn)動(dòng)員同時(shí)起跑,剛跑出200m后,甲不慎摔倒,他又迅速地爬起來(lái)繼續(xù)投入比賽,并取得了優(yōu)異的成績(jī).圖中分別表示甲、乙兩名運(yùn)動(dòng)員所跑的路程y(m)與比賽時(shí)間x(s)之間的關(guān)系,根據(jù)圖象解答下列問(wèn)題:
(1)甲再次投入比賽后,甲的速度為;
(2)甲再次投入比賽后,在距離終點(diǎn)多遠(yuǎn)處追上乙?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,有一個(gè)長(zhǎng)方體,它的長(zhǎng)、寬、高分別為5cm,3cm,4cm.在頂點(diǎn)A處有一只螞蟻,它想吃到與頂點(diǎn)A相對(duì)的頂點(diǎn)B的食物.
(1)請(qǐng)畫出該螞蟻沿長(zhǎng)方體表面爬行的三條線路圖(即平面展開(kāi)圖);
(2)已知螞蟻沿長(zhǎng)方體表面爬行的速度是0.8cm/s,問(wèn)螞蟻能否在11秒內(nèi)獲取到食物?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一圓弧過(guò)方格的格點(diǎn)A,B,C,在方格中建立平面直角坐標(biāo)系,使點(diǎn)A的坐標(biāo)為(-2,4).
(1) 用直尺畫出該圓弧所在圓的圓心M的位置,并寫出點(diǎn)M的坐標(biāo);
(2)判斷點(diǎn)D與⊙M的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】是線段上任一點(diǎn),,兩點(diǎn)分別從同時(shí)向點(diǎn)運(yùn)動(dòng),且點(diǎn)的運(yùn)動(dòng)速度為,點(diǎn)的運(yùn)動(dòng)速度為,運(yùn)動(dòng)的時(shí)間為.
(1)若,
①運(yùn)動(dòng)后,求的長(zhǎng);
②當(dāng)在線段上運(yùn)動(dòng)時(shí),試說(shuō)明;
(2)如果時(shí),,試探索的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示是一個(gè)長(zhǎng)為2m,寬為的長(zhǎng)方形,沿圖中虛線用剪刀均分成四個(gè)小長(zhǎng)方形,然后按圖2的方式拼成一個(gè)正方形
如圖中的陰影部分的正方形的邊長(zhǎng)等于______用含m、n的代數(shù)式表示;
請(qǐng)用兩種不同的方法列代數(shù)式表示圖中陰影部分的面積:
方法:______;
方法:______;
觀察圖,試寫出、、mn這三個(gè)代數(shù)式之間的等量關(guān)系:______;
根據(jù)題中的等量關(guān)系,若,,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四個(gè)結(jié)論①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正確的是( )
A. ①②③④ B. ①② C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺(tái)的利潤(rùn)為400元,B型電腦每臺(tái)的利潤(rùn)為500元.該商店計(jì)劃再一次性購(gòu)進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過(guò)A型電腦的2倍,設(shè)購(gòu)進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤(rùn)為y元.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)該商店購(gòu)進(jìn)A型、B型電腦各多少臺(tái),才能使銷售總利潤(rùn)最大,最大利潤(rùn)是多少?
(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)A型電腦出廠價(jià)下調(diào)a(0<a<200)元,且限定商店最多購(gòu)進(jìn)A型電腦60臺(tái),若商店保持同種電腦的售價(jià)不變,請(qǐng)你根據(jù)以上信息,設(shè)計(jì)出使這100臺(tái)電腦銷售總利潤(rùn)最大的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,如果AF=4,AB=7,
求:(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度
(2)求DE的長(zhǎng)度
(3)BE與DF的位置關(guān)系如何?并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com