【題目】在全市中學(xué)運(yùn)動(dòng)會(huì)800m比賽中,甲、乙兩名運(yùn)動(dòng)員同時(shí)起跑,剛跑出200m后,甲不慎摔倒,他又迅速地爬起來(lái)繼續(xù)投入比賽,并取得了優(yōu)異的成績(jī).圖中分別表示甲、乙兩名運(yùn)動(dòng)員所跑的路程y(m)與比賽時(shí)間x(s)之間的關(guān)系,根據(jù)圖象解答下列問(wèn)題:
(1)甲再次投入比賽后,甲的速度為;
(2)甲再次投入比賽后,在距離終點(diǎn)多遠(yuǎn)處追上乙?
【答案】(1)4m/s;(2)甲在距離終點(diǎn)200m處追上乙.
【解析】
(1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以計(jì)算出甲再次投入比賽后,甲的速度;
(2)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得乙對(duì)應(yīng)的函數(shù)解析式,然后即可求得甲乙相遇的時(shí)刻,從而可以計(jì)算出甲再次投入比賽后,在距離終點(diǎn)多遠(yuǎn)處追上乙.
解:(1)由圖象可得,
甲再次投入比賽后,甲的速度為:(800200)÷(250100)=600÷150=4(m/s),
故答案為:4m/s;
(2)設(shè)乙對(duì)應(yīng)的函數(shù)解析式為y=kx,
k=800,得k=3,
即乙對(duì)應(yīng)的函數(shù)解析式為y=3x,
令3x=200+4(x100),得x=200,
故甲再次投入比賽后,甲追上乙時(shí),距離終點(diǎn)的距離是:8003×200=200(m),
即甲再次投入比賽后,在距離終點(diǎn)200m處追上乙.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB交x軸于點(diǎn)A(a,0),交y軸于點(diǎn)B(0,b),且a、b滿足.
(1)點(diǎn)A的坐標(biāo)為 ;點(diǎn)B的坐標(biāo)為 ;
(2)如圖1,若點(diǎn)C的坐標(biāo)為(-3,-2),且BE⊥AC于點(diǎn)E,OD⊥OC交BE延長(zhǎng)線于D,試求點(diǎn)D的坐標(biāo);
(3)如圖2,M、N分別為OA、OB邊上的點(diǎn),OM=ON,OP⊥AN交AB于點(diǎn)P,過(guò)點(diǎn)P 作PG⊥BM,交AN的延長(zhǎng)線于點(diǎn)G,請(qǐng)寫(xiě)出線段AG、OP與PG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=6,AC=10,AD是BC邊上的中線,且AD=4,延長(zhǎng)AD到點(diǎn)E,使DE=AD,連接CE.
(1)求證:△AEC是直角三角形.
(2)求BC邊的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】仔細(xì)想一想,完成下面的說(shuō)理過(guò)程.
如圖,已知AB∥CD,∠B=∠D
求證:∠E=∠DFE.
證明:∵AB∥CD (已知 ),
∴∠B+∠ =180°( )
又∵∠B=∠D(已知 )
∴∠D +∠BCD=180°( )
∴ ( )
∴∠E=∠DFE( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀短文,解決問(wèn)題
如果一個(gè)三角形和一個(gè)菱形滿足條件:三角形的一個(gè)角與菱形的一個(gè)角重合,且菱形的這個(gè)角的對(duì)角頂點(diǎn)在三角形的這個(gè)角的對(duì)邊上,則稱(chēng)這個(gè)菱形為該三角形的“親密菱形”.如圖1,菱形AEFD為△ABC的“親密菱形”.
如圖2,在△ABC中,以點(diǎn)A為圓心,以任意長(zhǎng)為半徑作弧,交AB、AC于點(diǎn)M、N,再分別以M、N為圓心,以大于MN的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)P,作射線AP,交BC于點(diǎn)F,過(guò)點(diǎn)F作FD//AC,F(xiàn)E//AB.
(1)求證:四邊形AEFD是△ABC的“親密菱形”;
(2)當(dāng)AB=6,AC=12,∠BAC=45°時(shí),求菱形AEFD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】嘉嘉同學(xué)動(dòng)手剪了如圖①所示的正方形與長(zhǎng)方形卡片若干張.
(1)他用1張1號(hào)、1張2號(hào)和2張3號(hào)卡片拼出一個(gè)新的圖形(如圖②).根據(jù)這個(gè)圖形的面積關(guān)系寫(xiě)出一個(gè)你所熟悉的乘法公式,這個(gè)乘法公式是________.
(2)如果要拼成一個(gè)長(zhǎng)為(a+2b),寬為(a+b)的大長(zhǎng)方形,則需要1號(hào)卡片________張,2號(hào)卡片________張,3號(hào)卡片________張.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F.若AC=3,AB=5,則CE的長(zhǎng)為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代偉大的數(shù)學(xué)家劉徽將勾股形(古人稱(chēng)直角三角形為勾股形)分割成一個(gè)正方形和兩對(duì)全等的直角三角形,得到一個(gè)恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個(gè)這樣的圖形拼成,若a=3,b=4,則該矩形的面積為( )
A. 20 B. 24 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E、F、G、H分別為矩形ABCD的邊AB、BC、CD、DA的中點(diǎn),連接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,則AB的長(zhǎng)為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com