【題目】如圖,樓房BD的前方豎立著旗桿AC.小亮在B處觀察旗桿頂端C的仰角為45°,在D處觀察旗桿頂端C的俯角為30°,樓高BD為20米.
(1)求∠BCD的度數(shù);
(2)求旗桿AC的高度.
【答案】(1)75°;(2)米
【解析】
(1)過點(diǎn)C作CE⊥BD于E,則DF∥CE,AB∥CE,利用平行線的性質(zhì)求得相關(guān)角的度數(shù);
(2)在Rt△ECD、Rt△BCE中,利用正切三角函數(shù)解這兩個(gè)直角三角形,求得CE的長(zhǎng)度,進(jìn)而即可求出答案.
(1)過點(diǎn)C作CE⊥BD于E,則DF∥CE,AB∥CE
∵DF∥CE
∴∠ECD=∠CDF=30°,
同理∠ECB=∠ABC=45°,
∴∠BCD=∠ECD+∠ECB=75°;
(2)在Rt△ECD中,∠ECD=30°,
∵ ,
∴,
同理:BE=CE,
∵BD=BE+DE,
∴,解得:,
∴AC=BE=CE=,
答:旗桿AC的高度為米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為實(shí)現(xiàn)2020年全面脫貧的目標(biāo),我國實(shí)施“精準(zhǔn)扶貧”戰(zhàn)略,從而使貧困戶的生活條件得到改善,生活質(zhì)量明顯提高.為了切實(shí)關(guān)注、關(guān)愛貧困家庭學(xué)生,某校對(duì)全校各班貧困家庭學(xué)生的人數(shù)情況進(jìn)行了統(tǒng)計(jì),統(tǒng)計(jì)發(fā)現(xiàn)班上貧困家庭學(xué)生人數(shù)分別有2名,3名,4名,5名,6名,共五種情況.并將其制成了如下兩幅不完整的統(tǒng)計(jì)圖:
請(qǐng)回答下列問題:
(1)求該校一共有班級(jí)________個(gè);在扇形統(tǒng)計(jì)圖中,貧困家庭學(xué)生人數(shù)有5名的班級(jí)所對(duì)應(yīng)扇形圓心角為________°;
(2)將條形圖補(bǔ)充完整;
(3)甲、乙、丙是貧困生中的三名學(xué)生,學(xué)校決定從這三名學(xué)生中隨機(jī)抽取兩名代表到市里進(jìn)行發(fā)言,用列表法或畫樹狀圖法,求同時(shí)抽到甲,乙兩名學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為的直徑,為的切線,,交于點(diǎn),為弧的中點(diǎn),連接,交于點(diǎn).
(1)求證:為的切線;
(2)求證:;
(3)若 ,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一張矩形紙片ABCD,已知AB=8,AD=6,E為AB上一點(diǎn),AE=5,現(xiàn)要剪下一張等腰三角形紙片(△AEP),使點(diǎn)P落在矩形ABCD的某一條邊上,則等腰三角形AEP的底邊上的高的長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形OAA1的直角邊OA在x軸上,點(diǎn)A1在第一象限,且OA=1,以點(diǎn)A1為直角頂點(diǎn),OA1為一直角邊作等腰直角三角形OA1A2,再以點(diǎn)A2為直角頂點(diǎn),OA2為直角邊作等腰直角三角形OA2A3…依此規(guī)律,則點(diǎn)A2020的坐標(biāo)是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在研究拋物線(為常數(shù))時(shí),得到如下結(jié)論,其中正確的是( )
A.無論取何實(shí)數(shù),的值都小于0
B.該拋物線的頂點(diǎn)始終在直線上
C.當(dāng)時(shí),隨的增大而增大,則
D.該拋物線上有兩點(diǎn),,若,,則
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為3,E、F分別是AB、BC邊上的點(diǎn),且,將繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到. 若,則EF的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織學(xué)生參加“新冠肺炎”防疫知識(shí)競(jìng)賽,從中抽取了部分學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì),并按照成績(jī)從低到高分成A,B,C,D,E五個(gè)小組,繪制統(tǒng)計(jì)圖如表(未完成),解答下列問題:
(1)樣本容量為 ,頻數(shù)分布直方圖中a= ;
(2)扇形統(tǒng)計(jì)圖中E小組所對(duì)應(yīng)的扇形圓心角為n°,求n的值并補(bǔ)全頻數(shù)分布直方圖;
(3)若成績(jī)?cè)?/span>80分以上(不含80分)為優(yōu)秀,全校共有3000名學(xué)生,估計(jì)成績(jī)優(yōu)秀的學(xué)生有多少名?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com