【題目】小明在研究拋物線為常數(shù))時,得到如下結論,其中正確的是(

A.無論取何實數(shù),的值都小于0

B.該拋物線的頂點始終在直線

C.時,的增大而增大,則

D.該拋物線上有兩點,,若,,則

【答案】D

【解析】

根據拋物線的解析式的性質,對每個選項進行分析即可.

A、由函數(shù)表達式的性質可得,拋物線的頂點坐標為(h,-h+1),拋物線的最大值為-h+1,若h<1,則y>0,故A項錯誤;

B、由題可得出拋物線的頂點坐標為(h,-h+1),

x=h時,代入y=x-1得,故B項錯誤;

C、由題意得,拋物線在x=h左側時,的增大而增大,

,故C項錯誤;

D、∵x1<x2,x1+x2>2h,

x1x=h左側且更靠近x=h,

∵在中,xx=h越近,y值越大,

y1>y2,故D項正確;

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】問題提出

1)如圖①,在等腰RtABC中,斜邊AC4,點DAC上一點,連接BD,則BD的最小值為   

問題探究

2)如圖②,在ABC中,ABAC5,BC6,點MBC上一點,且BM4,點P是邊AB上一動點,連接PM,將BPM沿PM翻折得到DPM,點D與點B對應,連接AD,求AD的最小值;

問題解決

3)如圖③,四邊形ABCD是規(guī)劃中的休閑廣場示意圖,其中∠BAD=∠ADC135°,∠DCB30°,AD2km,AB3km,點MBC上一點,MC4km.現(xiàn)計劃在四邊形ABCD內選取一點P,把DCP建成商業(yè)活動區(qū),其余部分建成景觀綠化區(qū).為方便進入商業(yè)區(qū),需修建小路BP、MP,從實用和美觀的角度,要求滿足∠PMB=∠ABP,且景觀綠化區(qū)面積足夠大,即DCP區(qū)域面積盡可能。畡t在四邊形ABCD內是否存在這樣的點P?若存在,請求出DCP面積的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】[閱讀理解]

構造“平行八字型”全等三角形模型是證明線段相等的一種方法,我們常用這種方法證明線段的中點問題.

例如:如圖,D是△ABCAB上一點,EAC的中點,過點CCFAB,交DE的延長線于點F,則易證E是線段DF的中點.

[經驗運用]

請運用上述閱讀材料中所積累的經驗和方法解決下列問題.

1)如圖1,在正方形ABCD中,點EAB上,點FBC的延長線上,且滿足AECF,連接EFAC于點G

求證:GEF的中點;

CGBE;

[拓展延伸]

2)如圖2,在矩形ABCD中,AB2BC,點EAB上,點FBC的延長線上,且滿足AE2CF,連接EFAC于點G.探究BECG之間的數(shù)量關系,并說明理由;

3)如圖3,若點EBA的延長線上,點F在線段BC上,DFAC于點HBF2,CF1,( 2)中的其它條件不變,請直接寫出GH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,樓房BD的前方豎立著旗桿AC.小亮在B處觀察旗桿頂端C的仰角為45°,在D處觀察旗桿頂端C的俯角為30°,樓高BD20米.

1)求∠BCD的度數(shù);

2)求旗桿AC的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為實現(xiàn)區(qū)域教育均衡發(fā)展,我市計劃對某縣、兩類薄弱學校全部進行改造.根據預算,共需資金1575萬元.改造一所類學校和兩所類學校共需資金230萬元;改造兩所類學校和一所類學校共需資金205萬元.

1)改造一所類學校和一所類學校所需的資金分別是多少萬元?

2)若該縣的類學校不超過5所,則類學校至少有多少所?

3)我市計劃今年對該縣兩類學校共6所進行改造,改造資金由國家財政和地方財政共同承擔.若今年國家財政撥付的改造資金不超過400萬元;地方財政投入的改造資金不少于70萬元,其中地方財政投入到、兩類學校的改造資金分別為每所10萬元和15萬元.請你通過計算求出有幾種改造方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案:一戶家庭的月均用水量不超過(單位:)的部分按平價收費,超出的部分按議價收費.為此擬召開聽證會,以確定一個合理的月均用水量標準.通過抽樣,獲得了前一年1000戶家庭每戶的月均用水量(單位:),將這1000個數(shù)據按照,,…,分成8組,制成了如圖所示的頻數(shù)分布直方圖.

1)寫出的值,并估計這1000戶家庭月均用水量的平均數(shù);(同一組中的數(shù)據以這組數(shù)據所在范圍的組中值作代表)

2)假定該市政府希望70%的家庭的月均用水量不超過標準,請判斷若以(1)中所求得的平均數(shù)作為標準是否合理?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兒童用藥的劑量常常按他們的體重來計算,某種藥品,體重的兒童,每次正常服用量為;體重的兒童每次正常服用量為;體重在范圍內時,每次正常服用量是兒童體重的一次函數(shù)中,現(xiàn)實中,該藥品每次實際服用量可以比每次正常服用略高一些,但不能超過正常服用量的12倍,否則會對兒童的身體造成較大損害.

1)求之間的函數(shù)關系式,并寫出自變量的取值范圍;

2)若該藥品的一種包裝規(guī)格為/袋,求體重在什么范圍的兒童生病時可以一次服下一袋藥?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某社區(qū)計劃對面積為3600m2的區(qū)域進行綠化經投標,由甲,乙兩個工程隊來完成,已知甲隊4天能完成綠化的面積等于乙隊8天完成綠化的面積甲隊3天能完成綠化的面積比乙隊5天能完成綠化面積多50m2

(1)求甲、乙兩工程隊每天能完成綠化的面積;

(2)若甲隊每天化費用是1.2萬元,乙隊每天綠化費用為0.5萬元,要使這次綠化的總費用不超過40萬元,則至少應安排乙工程隊綠化多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,射線平分,為射線上一點,以為圓心,10為半徑作,分別與兩邊相交于、,連結,此時有

1)求證:;

2)若,求弦的長;

查看答案和解析>>

同步練習冊答案