【題目】在銳角ABC中,邊BC長(zhǎng)為18,高AD長(zhǎng)為12

1)如圖,矩形EFCH的邊GHBC邊上,其余兩個(gè)頂點(diǎn)E、F分別在AB、AC邊上,EFAD于點(diǎn)K,求的值;

2)設(shè)EHx,矩形EFGH的面積為S,求Sx的函數(shù)關(guān)系式,并求S的最大值.

【答案】1;(254

【解析】

1)根據(jù)相似三角形的對(duì)應(yīng)線段(對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、對(duì)應(yīng)邊上的高)的比也等于相似比進(jìn)行計(jì)算即可;

2)根據(jù)EHKDx,得出AK12x,EF12x),再根據(jù)Sx12x)=﹣x62+54,可得當(dāng)x6時(shí),S有最大值為54

解:(1)∵△AEF∽△ABC,

,

∵邊BC長(zhǎng)為18,高AD長(zhǎng)為12,

;

2)∵EHKDx,

AK12x,EF12x),

Sx12x)=﹣x62+54.

當(dāng)x6時(shí),S有最大值為54

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某養(yǎng)殖場(chǎng)在養(yǎng)殖面積擴(kuò)建中,準(zhǔn)備將總長(zhǎng)為米的籬笆圍成 矩形形狀的雞舍,其中一邊利用現(xiàn)有的一段足夠長(zhǎng)的圍墻,其余三邊 用籬笆,且在與墻平行的一邊上開(kāi)一個(gè)米寬的門(mén).設(shè)邊長(zhǎng)為米, 雞舍面積為平方米.

求出的函數(shù)關(guān)系式;(不需寫(xiě)自變量的取值范圍).

當(dāng)雞舍的面積為平方米時(shí),求出雞舍的一邊的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在4×4的網(wǎng)格中,每一個(gè)小方格都是邊長(zhǎng)為1的小正方形,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),以O為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系.若拋物線yx2+bx+c的圖象至少經(jīng)過(guò)圖中(4×4的網(wǎng)格中)的三個(gè)格點(diǎn),并且至少一個(gè)格點(diǎn)在x軸上,則符合要求的拋物線一定不經(jīng)過(guò)的格點(diǎn)坐標(biāo)為( 。

A.1,3B.2,3C.14D.2,4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ABAC5sinC,將ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到ADE,點(diǎn)B、C分別與點(diǎn)D、E對(duì)應(yīng),AD與邊BC交于點(diǎn)F.如果AEBC,那么BF的長(zhǎng)是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,EBC的中點(diǎn),將ABE沿直線AE折疊時(shí)點(diǎn)B落在點(diǎn)F處,連接FC,若∠DAF18°,則∠DCF_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知射線,點(diǎn)B點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度沿射線向右運(yùn)動(dòng);同時(shí)射線繞點(diǎn)順時(shí)針旋轉(zhuǎn)一周,當(dāng)射線停止運(yùn)動(dòng)時(shí),點(diǎn)隨之停止運(yùn)動(dòng).為圓心,1個(gè)單位長(zhǎng)度為半徑畫(huà)圓,若運(yùn)動(dòng)兩秒后,射線恰好有且只有一個(gè)公共點(diǎn),則射線旋轉(zhuǎn)的速度為每秒______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,四邊形ABCD內(nèi)接于以BC為直徑的圓,圓心為O,且AB=AD,延長(zhǎng)CB、DA交于P,過(guò)C點(diǎn)作PD的垂線交PD的延長(zhǎng)線于E,且PB=BO,連接OA

1)求證:OACD;

2)求線段BCDC的值;

3)若CD=18,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,內(nèi)接于,點(diǎn)的延長(zhǎng)線上,

1)求證;;

2)若,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)P0的坐標(biāo)為(2,0),將點(diǎn)P0繞著原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)60°得點(diǎn)P1,延長(zhǎng)OP1到點(diǎn)P2,使OP2=2OP1,再將點(diǎn)P2繞著原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)60°得點(diǎn)P3,則點(diǎn)P3的坐標(biāo)是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案