【題目】問題的提出:n個平面最多可以把空間分割成多少個部分?
問題的轉化:由n上面問題比較復雜,所以我們先來研究跟它類似的一個較簡單的問題:
n條直線最多可以把平面分割成多少個部分?
如圖1,很明顯,平面中畫出1條直線時,會得到1+1=2個部分;所以,1條直線最多可以把平面分割成2個部分;
如圖2,平面中畫出第2條直線時,新增的一條直線與已知的1條直線最多有1個交點,這個交點會把新增的這條直線分成2部分,從而多出2個部分,即總共會得到1+1+2=4個部分,所以,2條直線最多可以把平面分割成4個部分;
如圖3,平面中畫出第3條直線時,新增的一條直線與已知的2條直線最多有2個交點,這2個交點會把新增的這條直線分成3部分,從而多出3個部分,即總共會得到1+1+2+3=7個部分,所以,3條直線最多可以把平面分割成7個部分;
平面中畫出第4條直線時,新增的一條直線與已知的3條直線最多有3個交點,這3個交點會把新增的這條直線分成4部分,從而多出4個部分,即總共會得到1+1+2+3+4=11個部分,所以,4條直線最多可以把平面分割成11個部分;…

(1)請你仿照前面的推導過程,寫出“5條直線最多可以把平面分割成多少個部分”的推導過程(只寫推導過程,不畫圖);
(2)根據(jù)遞推規(guī)律用n的代數(shù)式填空:n條直線最多可以把平面分割成個部分.
問題的解決:借助前面的研究,我們繼續(xù)開頭的問題;n個平面最多可以把空間分割成多少個部分?
首先,很明顯,空間中畫出1個平面時,會得到1+1=2個部分;所以,1個平面最多可以把空間分割成2個部分;
空間中有2個平面時,新增的一個平面與已知的1個平面最多有1條交線,這1條交線會把新增的這個平面最多分成2部分,從而多出2個部分,即總共會得到1+1+2=4個部分,所以,2個平面最多可以把空間分割成4個部分;
空間中有3個平面時,新增的一個平面與已知的2個平面最多有2條交線,這2條交線會把新增的這個平面最多分成4部分,從而多出4個部分,即總共會得到1+1+2+4=8個部分,所以,3個平面最多可以把空間分割成8個部分;
空間中有4個平面時,新增的一個平面與已知的3個平面最多有3條交線,這3條交線會把新增的這個平面最多分成7部分,從而多出7個部分,即總共會得到1+1+2+4+7=15個部分,所以,4個平面最多可以把空間分割成15個部分;
空間中有5個平面時,新增的一個平面與已知的4個平面最多有4條交線,這4條交線會把新增的這個平面最多分成11部分,而從多出11個部分,即總共會得到1+1+2+4+7+11=26個部分,所以,5個平面最多可以把空間分割成26個部分;…
(3)請你仿照前面的推導過程,寫出“6個平面最多可以把空間分割成多少個部分?”的推導過程(只寫推導過程,不畫圖);
(4)根據(jù)遞推規(guī)律填寫結果:10個平面最多可以把空間分割成個部分;
(5)設n個平面最多可以把空間分割成Sn個部分,設n﹣1個平面最多可以把空間分割成Sn1個部分,前面的遞推規(guī)律可以用Sn1和n的代數(shù)式表示Sn;這個等式是Sn=

【答案】
(1)解:根據(jù)規(guī)律得,平面中畫出第5條直線時,新增的一條直線與已知的4條直線最多有4個交點,這4個交點會把新增的這條直線分成5部分,從而多出5個部分,即總共會得到1+1+2+3+4+5=16個部分,所以,5條直線最多可以把平面分割成16個部分
(2)1+
(3)解:根據(jù)規(guī)律得,空間中有6個平面時,新增的一個平面與已知的5個平面最多有5條交線,這5條交線會把新增的這個平面最多分成16部分,而從多出16個部分,即總共會得到1+1+2+4+7+11+16=42個部分,所以,6個平面最多可以把空間分割成42個部分
(4)176
(5)Sn1+[1+ ]
【解析】解:(2)根據(jù)規(guī)律得,n條直線最多可以把平面分割成1+1+2+3+4+…+n=1+ ,

所以答案是1+ ;

⑷根據(jù)規(guī)律得,空間中有10個平面時,新增的一個平面與已知的9個平面最多有9條交線,這9條交線會把新增的這個平面最多分成37部分,而從多出37個部分,即總共會得到1+1+2+4+7+11+16+…+37=176個部分,所以,10個平面最多可以把空間分割成176個部分;

所以答案是:176;

⑸根據(jù)規(guī)律得,空間中有n個平面時,新增的一個平面與已知的(n﹣1)個平面最多有(n﹣1)條交線,這(n﹣1)條交線會把新增的這個平面最多分成[1+ ]部分,

∴Sn=Sn1+[1+ ]

所以答案是:Sn1+[1+ ].

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長度為1個單位長度的小正方形組成的正方形網(wǎng)格紙中,點A、B、C在小正方形的頂點上.

1)求的面積;

2)在圖中畫出與關于直線1成軸對稱的;

3)在如圖所示網(wǎng)格紙中,以為一邊作與全等的三角形,可以作出多少個三角形與全等(不要超出網(wǎng)格紙的范圍).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠設計了一款產(chǎn)品,成本價為每件10元.投放市場進行試銷,得到如下數(shù)據(jù):

售價x(元/件)

30

40

50

60

日銷售量y(件)

50

40

30

20


(1)若日銷售量y(件)是售價x(元/件)的一次函數(shù),求這個一次函數(shù)解析式.
(2)設這個工廠試銷該產(chǎn)品每天獲得的利潤為w(元),當售價定為每件多少元時,工廠每天獲得的利潤最大?最大利潤是多少元?(每天利潤=每天銷售總收入﹣每天銷售總成本)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】運用同一圖形的面積不同表示方式相同可以證明一類含有線段的等式,這種解決問題的方法我們稱之為面積法.

(1)如圖1,在等腰三角形ABC中,AB=AC,AC邊上的高為h,M是底邊BC上的任意一點,點M到腰AB、AC的距離分別為h1、h2.請用面積法證明:h1+h2=h;

(2)當點MBC延長線上時,h1、h2、h之間的等量關系式是   ;(直接寫出結論不必證明)

(3)如圖2在平面直角坐標系中有兩條直線l1:y=x+3、l2:y=﹣3x+3,若l2上的一點Ml1的距離是1,請運用(1)、(2)的結論求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,將ABC繞頂點C逆時針旋轉得到ABC,MBC的中點,PAB的中點,連接PM,若BC2,∠BAC30°,則線段PM的最大值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直角梯形的一個內角為120°,較長的腰為6cm,有一底邊長為5cm,則這個梯形的面積為( )
A. cm2
B. cm2
C.25 cm2
D. cm2 cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,⊙O交BC于D,過D作⊙O的切線DE交AC于E,且DE⊥AC,由上述條件,你能推出的正確結論有:(要求:不再標注其他字母,找結論的過程中所連輔助線不能出現(xiàn)在結論中,不寫推理過程,至少寫出4個結論,結論不能類同).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為傳承優(yōu)秀傳統(tǒng)文化,某校為各班購進三國演義水滸傳注音讀本若干套,其中每套三國演義注音讀本的價格比每套水滸傳注音讀本的價格貴60元,用4800元購買水滸傳注音讀本的套數(shù)是用3600元購買三國演義注音讀本套數(shù)的2倍,求每套水滸傳注音讀本的價格.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示.現(xiàn)將△ABC平移,使點A變換為點D,點EF分別是B、C的對應點.

(1)請畫出平移后的△DEF.

(2)若連接AD、CF,則這兩條線段之間的關系是   .

(3)利用網(wǎng)格點畫出△ABCBC邊上的高AM(M為垂足).

(4)滿足三角形ABP的面積等于三角形ACB的面積的格點P (不和C重合).

查看答案和解析>>

同步練習冊答案