【題目】某工廠設(shè)計了一款產(chǎn)品,成本價為每件10元.投放市場進行試銷,得到如下數(shù)據(jù):

售價x(元/件)

30

40

50

60

日銷售量y(件)

50

40

30

20


(1)若日銷售量y(件)是售價x(元/件)的一次函數(shù),求這個一次函數(shù)解析式.
(2)設(shè)這個工廠試銷該產(chǎn)品每天獲得的利潤為w(元),當(dāng)售價定為每件多少元時,工廠每天獲得的利潤最大?最大利潤是多少元?(每天利潤=每天銷售總收入﹣每天銷售總成本)

【答案】
(1)解:設(shè)y=kx+b(k≠0).

,

解得: ,

∴y=﹣x+80


(2)解:W=y(x﹣10)=(﹣x+80)(x﹣10)=﹣(x﹣45)2+1225,

故當(dāng)售價定為每件45元時,工廠每天獲得的利潤最大,最大利潤是1225元


【解析】(1)用待定系數(shù)法得出方程組,解方程組得出k,b的值即可求出一次函數(shù)的解析式;
(2)用這個工廠試銷該產(chǎn)品每天獲得的總利用=銷售數(shù)量單件利潤得出函數(shù)解析式,化為頂點式即可解答。
【考點精析】掌握確定一次函數(shù)的表達式是解答本題的根本,需要知道確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某一路口某一時段的汽車流量,小明同學(xué)10天中在同一時段統(tǒng)計通過該路口的汽車數(shù)量(單位:輛),將統(tǒng)計結(jié)果繪制成如下折線統(tǒng)計圖:

由此估計一個月(30天)該時段通過該路口的汽車數(shù)量超過200輛的天數(shù)為( )
A.9
B.10
C.12
D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,是坐標(biāo)原點,點分別在軸的正半軸和x軸的正半軸上,的面積為,過點作直線.

1)求點的坐標(biāo);

2)點是第一象限直線上一動點,連接.過點,交軸于點D,設(shè)點的縱坐標(biāo)為,點的橫坐標(biāo)為,求的關(guān)系式;

3)在(2)的條件下,過點作直線,交軸于點,交直線于點,當(dāng)時,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC繞點A按逆時針方向旋轉(zhuǎn)120°得到ABC(點B的對應(yīng)點是點B',點C的對應(yīng)點是點C'),連接BB,若ACBB,則∠C'AB的度數(shù)為( 。

A. 15°B. 30°C. 45°D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面推理過程:

如圖,已知∠1 ∠2,∠B ∠C,可推得AB∥CD.理由如下:

∵∠1 ∠2(已知),

∠1 ∠CGD______________ _________),

∴∠2 ∠CGD(等量代換).

∴CE∥BF___________________ ________).

∴∠ ∠C__________________________).

∵∠B ∠C(已知),

∴∠ ∠B(等量代換).

∴AB∥CD________________________________).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列條件中,①∠A+B=C; ②∠ABC=123 ③∠A=B=C;

④∠A=B=2C; ⑤∠A=2B=3C,能確定ABC為直角三角形的條件有(  。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題的提出:n個平面最多可以把空間分割成多少個部分?
問題的轉(zhuǎn)化:由n上面問題比較復(fù)雜,所以我們先來研究跟它類似的一個較簡單的問題:
n條直線最多可以把平面分割成多少個部分?
如圖1,很明顯,平面中畫出1條直線時,會得到1+1=2個部分;所以,1條直線最多可以把平面分割成2個部分;
如圖2,平面中畫出第2條直線時,新增的一條直線與已知的1條直線最多有1個交點,這個交點會把新增的這條直線分成2部分,從而多出2個部分,即總共會得到1+1+2=4個部分,所以,2條直線最多可以把平面分割成4個部分;
如圖3,平面中畫出第3條直線時,新增的一條直線與已知的2條直線最多有2個交點,這2個交點會把新增的這條直線分成3部分,從而多出3個部分,即總共會得到1+1+2+3=7個部分,所以,3條直線最多可以把平面分割成7個部分;
平面中畫出第4條直線時,新增的一條直線與已知的3條直線最多有3個交點,這3個交點會把新增的這條直線分成4部分,從而多出4個部分,即總共會得到1+1+2+3+4=11個部分,所以,4條直線最多可以把平面分割成11個部分;…

(1)請你仿照前面的推導(dǎo)過程,寫出“5條直線最多可以把平面分割成多少個部分”的推導(dǎo)過程(只寫推導(dǎo)過程,不畫圖);
(2)根據(jù)遞推規(guī)律用n的代數(shù)式填空:n條直線最多可以把平面分割成個部分.
問題的解決:借助前面的研究,我們繼續(xù)開頭的問題;n個平面最多可以把空間分割成多少個部分?
首先,很明顯,空間中畫出1個平面時,會得到1+1=2個部分;所以,1個平面最多可以把空間分割成2個部分;
空間中有2個平面時,新增的一個平面與已知的1個平面最多有1條交線,這1條交線會把新增的這個平面最多分成2部分,從而多出2個部分,即總共會得到1+1+2=4個部分,所以,2個平面最多可以把空間分割成4個部分;
空間中有3個平面時,新增的一個平面與已知的2個平面最多有2條交線,這2條交線會把新增的這個平面最多分成4部分,從而多出4個部分,即總共會得到1+1+2+4=8個部分,所以,3個平面最多可以把空間分割成8個部分;
空間中有4個平面時,新增的一個平面與已知的3個平面最多有3條交線,這3條交線會把新增的這個平面最多分成7部分,從而多出7個部分,即總共會得到1+1+2+4+7=15個部分,所以,4個平面最多可以把空間分割成15個部分;
空間中有5個平面時,新增的一個平面與已知的4個平面最多有4條交線,這4條交線會把新增的這個平面最多分成11部分,而從多出11個部分,即總共會得到1+1+2+4+7+11=26個部分,所以,5個平面最多可以把空間分割成26個部分;…
(3)請你仿照前面的推導(dǎo)過程,寫出“6個平面最多可以把空間分割成多少個部分?”的推導(dǎo)過程(只寫推導(dǎo)過程,不畫圖);
(4)根據(jù)遞推規(guī)律填寫結(jié)果:10個平面最多可以把空間分割成個部分;
(5)設(shè)n個平面最多可以把空間分割成Sn個部分,設(shè)n﹣1個平面最多可以把空間分割成Sn1個部分,前面的遞推規(guī)律可以用Sn1和n的代數(shù)式表示Sn;這個等式是Sn=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算的結(jié)果中,是正數(shù)的是( )
A.(﹣2007)1
B.(﹣1)2007
C.(﹣1)×(﹣2007)
D.(﹣2007)÷2007

查看答案和解析>>

同步練習(xí)冊答案