【題目】為傳承優(yōu)秀傳統(tǒng)文化,某校為各班購(gòu)進(jìn)三國(guó)演義水滸傳注音讀本若干套,其中每套三國(guó)演義注音讀本的價(jià)格比每套水滸傳注音讀本的價(jià)格貴60元,用4800元購(gòu)買(mǎi)水滸傳注音讀本的套數(shù)是用3600元購(gòu)買(mǎi)三國(guó)演義注音讀本套數(shù)的2倍,求每套水滸傳注音讀本的價(jià)格.

【答案】每套水滸傳注音讀本的價(jià)格為120

【解析】

設(shè)每套水滸傳注音讀本的價(jià)格為x元,則每套三國(guó)演義注音讀本的價(jià)格為元,根據(jù)數(shù)量總價(jià)單價(jià)結(jié)合用4800元購(gòu)買(mǎi)水滸傳注音讀本的套數(shù)是用3600元購(gòu)買(mǎi)三國(guó)演義注音讀本套數(shù)的2倍,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論.

設(shè)每套水滸傳注音讀本的價(jià)格為x元,則每套三國(guó)演義注音讀本的價(jià)格為元,

依題意,得:

解得:

經(jīng)檢驗(yàn),是原分式方程的解,且符合題意,

答:每套水滸傳注音讀本的價(jià)格為120元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,是坐標(biāo)原點(diǎn),點(diǎn)分別在軸的正半軸和x軸的正半軸上,的面積為,過(guò)點(diǎn)作直線(xiàn).

1)求點(diǎn)的坐標(biāo);

2)點(diǎn)是第一象限直線(xiàn)上一動(dòng)點(diǎn),連接.過(guò)點(diǎn),交軸于點(diǎn)D,設(shè)點(diǎn)的縱坐標(biāo)為,點(diǎn)的橫坐標(biāo)為,求的關(guān)系式;

3)在(2)的條件下,過(guò)點(diǎn)作直線(xiàn),交軸于點(diǎn),交直線(xiàn)于點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題的提出:n個(gè)平面最多可以把空間分割成多少個(gè)部分?
問(wèn)題的轉(zhuǎn)化:由n上面問(wèn)題比較復(fù)雜,所以我們先來(lái)研究跟它類(lèi)似的一個(gè)較簡(jiǎn)單的問(wèn)題:
n條直線(xiàn)最多可以把平面分割成多少個(gè)部分?
如圖1,很明顯,平面中畫(huà)出1條直線(xiàn)時(shí),會(huì)得到1+1=2個(gè)部分;所以,1條直線(xiàn)最多可以把平面分割成2個(gè)部分;
如圖2,平面中畫(huà)出第2條直線(xiàn)時(shí),新增的一條直線(xiàn)與已知的1條直線(xiàn)最多有1個(gè)交點(diǎn),這個(gè)交點(diǎn)會(huì)把新增的這條直線(xiàn)分成2部分,從而多出2個(gè)部分,即總共會(huì)得到1+1+2=4個(gè)部分,所以,2條直線(xiàn)最多可以把平面分割成4個(gè)部分;
如圖3,平面中畫(huà)出第3條直線(xiàn)時(shí),新增的一條直線(xiàn)與已知的2條直線(xiàn)最多有2個(gè)交點(diǎn),這2個(gè)交點(diǎn)會(huì)把新增的這條直線(xiàn)分成3部分,從而多出3個(gè)部分,即總共會(huì)得到1+1+2+3=7個(gè)部分,所以,3條直線(xiàn)最多可以把平面分割成7個(gè)部分;
平面中畫(huà)出第4條直線(xiàn)時(shí),新增的一條直線(xiàn)與已知的3條直線(xiàn)最多有3個(gè)交點(diǎn),這3個(gè)交點(diǎn)會(huì)把新增的這條直線(xiàn)分成4部分,從而多出4個(gè)部分,即總共會(huì)得到1+1+2+3+4=11個(gè)部分,所以,4條直線(xiàn)最多可以把平面分割成11個(gè)部分;…

(1)請(qǐng)你仿照前面的推導(dǎo)過(guò)程,寫(xiě)出“5條直線(xiàn)最多可以把平面分割成多少個(gè)部分”的推導(dǎo)過(guò)程(只寫(xiě)推導(dǎo)過(guò)程,不畫(huà)圖);
(2)根據(jù)遞推規(guī)律用n的代數(shù)式填空:n條直線(xiàn)最多可以把平面分割成個(gè)部分.
問(wèn)題的解決:借助前面的研究,我們繼續(xù)開(kāi)頭的問(wèn)題;n個(gè)平面最多可以把空間分割成多少個(gè)部分?
首先,很明顯,空間中畫(huà)出1個(gè)平面時(shí),會(huì)得到1+1=2個(gè)部分;所以,1個(gè)平面最多可以把空間分割成2個(gè)部分;
空間中有2個(gè)平面時(shí),新增的一個(gè)平面與已知的1個(gè)平面最多有1條交線(xiàn),這1條交線(xiàn)會(huì)把新增的這個(gè)平面最多分成2部分,從而多出2個(gè)部分,即總共會(huì)得到1+1+2=4個(gè)部分,所以,2個(gè)平面最多可以把空間分割成4個(gè)部分;
空間中有3個(gè)平面時(shí),新增的一個(gè)平面與已知的2個(gè)平面最多有2條交線(xiàn),這2條交線(xiàn)會(huì)把新增的這個(gè)平面最多分成4部分,從而多出4個(gè)部分,即總共會(huì)得到1+1+2+4=8個(gè)部分,所以,3個(gè)平面最多可以把空間分割成8個(gè)部分;
空間中有4個(gè)平面時(shí),新增的一個(gè)平面與已知的3個(gè)平面最多有3條交線(xiàn),這3條交線(xiàn)會(huì)把新增的這個(gè)平面最多分成7部分,從而多出7個(gè)部分,即總共會(huì)得到1+1+2+4+7=15個(gè)部分,所以,4個(gè)平面最多可以把空間分割成15個(gè)部分;
空間中有5個(gè)平面時(shí),新增的一個(gè)平面與已知的4個(gè)平面最多有4條交線(xiàn),這4條交線(xiàn)會(huì)把新增的這個(gè)平面最多分成11部分,而從多出11個(gè)部分,即總共會(huì)得到1+1+2+4+7+11=26個(gè)部分,所以,5個(gè)平面最多可以把空間分割成26個(gè)部分;…
(3)請(qǐng)你仿照前面的推導(dǎo)過(guò)程,寫(xiě)出“6個(gè)平面最多可以把空間分割成多少個(gè)部分?”的推導(dǎo)過(guò)程(只寫(xiě)推導(dǎo)過(guò)程,不畫(huà)圖);
(4)根據(jù)遞推規(guī)律填寫(xiě)結(jié)果:10個(gè)平面最多可以把空間分割成個(gè)部分;
(5)設(shè)n個(gè)平面最多可以把空間分割成Sn個(gè)部分,設(shè)n﹣1個(gè)平面最多可以把空間分割成Sn1個(gè)部分,前面的遞推規(guī)律可以用Sn1和n的代數(shù)式表示Sn;這個(gè)等式是Sn=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小慧根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=|x1|的圖象與性質(zhì)進(jìn)行了研究,下面是小慧的研究過(guò)程,請(qǐng)補(bǔ)充完成:

1)函數(shù)y=|x1|的自變量x的取值范圍是   ;

2)列表,找出yx的幾組對(duì)應(yīng)值.其中,b   ;

x

1

0

2

3

y

b

0

2

3)在平面直角坐標(biāo)系xoy中,描出以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),并畫(huà)出該函數(shù)的圖象;

4)寫(xiě)出該函數(shù)的一條性質(zhì):   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料,回答問(wèn)題
一艘輪船以20海里/時(shí)的速度由西向東航行,途中接到臺(tái)風(fēng)警報(bào),臺(tái)風(fēng)中心正以40海里/時(shí)的速度由南向北移動(dòng),距臺(tái)風(fēng)中心20 海里的圓形區(qū)域(包括邊界)都屬臺(tái)風(fēng)區(qū),當(dāng)輪船到A處時(shí),測(cè)得臺(tái)風(fēng)中心移到位于點(diǎn)A正南方向B處,且AB=100海里.

(1)若這艘輪船自A處按原速度和方向繼續(xù)航行,在途中會(huì)不會(huì)遇到臺(tái)風(fēng)?若會(huì),試求輪船最初遇到臺(tái)風(fēng)的時(shí)間;若不會(huì),說(shuō)明理由;
(2)現(xiàn)輪船自A處立即提高船速,向位于北偏東60°方向,相距60海里的D港駛?cè)ィ瑸槭古_(tái)風(fēng)到來(lái)之前,到達(dá)D港,問(wèn)船速至少應(yīng)提高多少(提高的船速取整數(shù), ≈3.6)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國(guó)古代數(shù)學(xué)的驕傲.如圖所示的趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形.設(shè)直角三角形較長(zhǎng)直角邊長(zhǎng)為a,較短直角邊長(zhǎng)為b,若ab=8,大正方形的面積為25,則小正方形的邊長(zhǎng)為(

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算的結(jié)果中,是正數(shù)的是( )
A.(﹣2007)1
B.(﹣1)2007
C.(﹣1)×(﹣2007)
D.(﹣2007)÷2007

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社區(qū)計(jì)劃對(duì)面積為400m2的區(qū)域進(jìn)行綠化.經(jīng)測(cè)算,甲隊(duì)每天能完成綠化面積是乙隊(duì)每天能完成綠化面積的2倍,且甲隊(duì)單獨(dú)完成比乙隊(duì)單獨(dú)完成少用4天.求甲、乙兩隊(duì)每天單獨(dú)完成綠化的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)為了進(jìn)一步緩解交通擁堵問(wèn)題,決定修建一條長(zhǎng)為7千米的公路.如果平均每天的修建費(fèi)y(萬(wàn)元)與修建天數(shù)x(天)在30≤x≤12 0之間時(shí)具有一次函數(shù)的關(guān)系,如下表所示.

x

50

60

90

120

y

40

38

32

26


(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)后來(lái)在修建的過(guò)程中計(jì)劃發(fā)生改變,政府決定多修3千米,因此在沒(méi)有增減建設(shè)力量的情況下,修完這條路比計(jì)劃晚了15天,求原計(jì)劃每天的修建費(fèi).

查看答案和解析>>

同步練習(xí)冊(cè)答案