【題目】如圖,RtABC中,∠ACB90°,∠A30°CDABD,BCD的周長為(62cm,則ABC的周長為( cm

A.92B.12C.124D.182

【答案】C

【解析】

由已知RtABC中,∠ACB=90°,∠A=30°,CDAB于點(diǎn)D,可得∠BCD=A=30°,根據(jù)含30度角的直角三角形的性質(zhì),可得:BC=AB,BD=BC,CD=AC,求出△BCD與△ABC的周長之比之后即可求ABC的周長;

解:

已知RtABC中,∠ACB=90°,∠A=30°,

CDAB

∴∠BCD=A=30°,

BC=ABBD=BC,CD=AC,

BC+BD+CD=(AB+BC+AC)

=,

∴△BCD與△ABC的周長之比為:,

BCD的周長為(62),

∴△ABC的周長為2×(62)=124

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1y=-0.5x+b分別與x軸、y軸交于AB兩點(diǎn),與直線l2y=kx-6交于點(diǎn)C42).

1)點(diǎn)A坐標(biāo)為(______,______),B為(______,______);

2)在線段BC上有一點(diǎn)E,過點(diǎn)Ey軸的平行線交直線l2于點(diǎn)F,設(shè)點(diǎn)E的橫坐標(biāo)為m,當(dāng)m為何值時(shí),四邊形OBEF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在⊙O中,AB為直徑,C為⊙O上一點(diǎn).

(1)如圖1,過點(diǎn)C作⊙O的切線,與AB的延長線相交于點(diǎn)P,若∠CAB=27°,求∠P的大小;

(2)如圖2,D為上一點(diǎn),且OD經(jīng)過AC的中點(diǎn)E,連接DC并延長,與AB的延長線相交于點(diǎn)P,若∠CAB=10°,求∠P的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對稱軸與x軸交于點(diǎn)D.

(1)求二次函數(shù)的表達(dá)式;

(2)y軸上是否存在一點(diǎn)P,使PBC為等腰三角形.若存在,請求出點(diǎn)P的坐標(biāo);

(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)在等腰三角形ABC,∠A130°,求∠B的度數(shù)

2)在等腰三角形ABC中,∠A40°,求∠B的度數(shù).

3)根據(jù)(1)(2)問后發(fā)現(xiàn),∠A的度數(shù)不同,得到∠B的度數(shù)的個(gè)數(shù)也可能不同,如果在等腰三角形ABC中,設(shè)∠Ax°,當(dāng)∠B有三個(gè)不同的度數(shù)時(shí),請你探索x的取值范圍,并用含x的式子表示∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,點(diǎn)P為邊AB所在直線上一點(diǎn),連結(jié)CP,M為線段CP的中點(diǎn),若滿足ACP=MBA,則稱點(diǎn)PABC好點(diǎn)”.

(1)如圖2,當(dāng)ABC=90°時(shí),命題線段AB上不存在好點(diǎn) (填)命題,并說明理由;

(2)如圖3,PABCBA延長線的一個(gè)好點(diǎn),若PC=4,PB=5,求AP的值;

(3)如圖4,在Rt△ABC中,CAB=90°,點(diǎn)PABC好點(diǎn),若AC=4,AB=5,AP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 a≠0)的對稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:

①4acb2

方程 的兩個(gè)根是x1=1,x2=3;

③3a+c0

當(dāng)y0時(shí),x的取值范圍是﹣1≤x3

當(dāng)x0時(shí),yx增大而增大

其中結(jié)論正確的個(gè)數(shù)是( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】過矩形ABCD的對角線AC的中點(diǎn)OEFAC,交BC邊于點(diǎn)E,交AD邊于點(diǎn)F,分別連接AE,CF

1)求證:四邊形AECF是菱形;

2)若AB6,AC10,EC,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形OABC,以點(diǎn)O為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,其中A(2,0),C(0,3),點(diǎn)P以每秒1個(gè)單位的速度從點(diǎn)C出發(fā)在射線CO上運(yùn)動(dòng),連接BP,作BEPBx軸于點(diǎn)E,連接PEAB于點(diǎn)F,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)t=2時(shí),求點(diǎn)E的坐標(biāo);

(2)AB平分∠EBP時(shí),求t的值.

(3)在運(yùn)動(dòng)的過程中,是否存在以P、O、E為頂點(diǎn)的三角形與△ABE相似.若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案