【題目】如圖1,在△ABC中,點P為邊AB所在直線上一點,連結(jié)CP,M為線段CP的中點,若滿足∠ACP=∠MBA,則稱點P為△ABC的“好點”.
(1)如圖2,當(dāng)∠ABC=90°時,命題“線段AB上不存在“好點”為 (填“真”或“假”)命題,并說明理由;
(2)如圖3,P是△ABC的BA延長線的一個 “好點”,若PC=4,PB=5,求AP的值;
(3)如圖4,在Rt△ABC中,∠CAB=90°,點P是△ABC的“好點”,若AC=4,AB=5,求AP的值.
【答案】(1)真;(2);(3)或或.
【解析】
(1)先根據(jù)直角三角形斜邊的中線等于斜邊的一半可知MP=MB,從而∠MPB=∠MBP,然后根據(jù)三角形外角的性質(zhì)說明即可;
(2)先證明△PAC∽△PMB,然后根據(jù)相似三角形的性質(zhì)求解即可;
(3)分三種情況求解:P為線段AB上的“好點”, P為線段AB延長線上的“好點”, P為線段BA延長線上的“好點”.
(1)真 .
理由如下:如圖,當(dāng)∠ABC=90°時,M為PC中點,BM=PM,
則∠MPB=∠MBP>∠ACP,
所以在線段AB上不存在“好點”;
(2)∵P為BA延長線上一個“好點”;
∴∠ACP=∠MBP;
∴△PAC∽△PMB;
∴即;
∵M為PC中點,
∴MP=2;
∴;
∴.
(3)第一種情況,P為線段AB上的“好點”,則∠ACP=∠MBA,找AP中點D,連結(jié)MD;
∵M為CP中點;
∴MD為△CPA中位線;
∴MD=2,MD//CA;
∴∠DMP=∠ACP=∠MBA;
∴△DMP∽△DBM;
∴DM2=DP·DB即4= DP·(5DP);
解得DP=1,DP=4(不在AB邊上,舍去;)
∴AP=2
第二種情況(1),P為線段AB延長線上的“好點”,則∠ACP=∠MBA,找AP中點D,此時,D在線段AB上,如圖,連結(jié)MD;
∵M為CP中點;
∴MD為△CPA中位線;
∴MD=2,MD//CA;
∴∠DMP=∠ACP=∠MBA;
∴△DMP∽△DBM
∴DM2=DP·DB即4= DP·(5DA)= DP·(5DP);
解得DP=1(不在AB延長線上,舍去),DP=4
∴AP=8;
第二種情況(2),P為線段AB延長線上的“好點”,找AP中點D,此時,D
此時,∠MBA>∠MDB>∠DMP=∠ACP,則這種情況不存在,舍去;
第三種情況,P為線段BA延長線上的“好點”,則∠ACP=∠MBA,
∴△PAC∽△PMB;
∴
∴BM垂直平分PC則BC=BP= ;
∴
∴綜上所述,或或;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)如今,“垃圾分類”意識已深入人心,垃圾一般可分為:可回收物、廚余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了兩袋垃圾.
(1)直接寫出甲所拿的垃圾恰好是“廚余垃圾”的概率;
(2)求乙所拿的兩袋垃圾不同類的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是( 。
A. 30° B. 60° C. 30°或150° D. 60°或120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是中線,且AC是DE的中垂線.
(1)求證:∠BAD=∠CAD;
(2)連接CE,寫出BD和CE的數(shù)量關(guān)系.并說明理由;
(3)當(dāng)∠BAC=90°,BC=8時,在AD上找一點P,使得點P到點C與到點E的距離之和最小,并求出此時△BCP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于D,△BCD的周長為(6+2)cm,則△ABC的周長為( )cm.
A.(9+2)B.(12+)C.(12+4)D.(18+2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中線,AE是∠BAD的角平分線,DF∥AB交AE的延長線于點F,則DF的長為___________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 (a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程 的兩個根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時,x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時,y隨x增大而增大
其中結(jié)論正確的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,有以下結(jié)論:
①abc>0,
②a﹣b+c<0,
③2a=b,
④4a+2b+c>0,
⑤若點(﹣2,)和(,)在該圖象上,則.
其中正確的結(jié)論是 (填入正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t(分)之間的關(guān)系如圖所示,下列結(jié)論:①甲步行的速度為60米/分;②乙走完全程用了30分鐘;③乙用12分鐘追上甲;④乙到達終點時,甲離終點還有360米;其中正確的結(jié)論有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com