【題目】如圖,△ABC中,AD是高,CE是中線,點G是CE的中點,且DG⊥CE,垂足為點G.
(1)求證:DC=BE;
(2)若∠AEC=54°,求∠BCE的度數.
【答案】(1)證明見解析(2)54°
【解析】
(1)由G是CE的中點,DG⊥CE得到DG是CE的垂直平分線,根據線段垂直平分線的性質得到DE=DC,由DE是Rt△ADB的斜邊AB上的中線,根據直角三角形斜邊上的中線等于斜邊的一半得到DE=BE=AB,即可得到DC=BE;
(2)由DE=DC得到∠DEC=∠BCE,由DE=BE得到∠B=∠EDB,根據三角形外角性質得到∠EDB=∠DEC+∠BCE=2∠BCE,則∠B=2∠BCE,由此根據外角的性質來求∠BCE的度數.
(1)∵G是CE的中點,DG⊥CE,
∴DG是CE的垂直平分線,
∴DE=DC,
∵AD是高,CE是中線,
∴DE是Rt△ADB的斜邊AB上的中線,
∴DE=BE= AB,
∴DC=BE;
(2)∵DE=DC,
∴∠DEC=∠BCE,
∴∠EDB=∠DEC+∠BCE=2∠BCE,
∵DE=BE,
∴∠B=∠EDB,
∴∠B=2∠BCE,
∴∠AEC=3∠BCE=54°,則∠BCE=18°.
科目:初中數學 來源: 題型:
【題目】某汽車廠去年每個季度汽車銷售數量(輛)占當季汽車產量(輛)百分比的統(tǒng)計圖如圖所示.根據統(tǒng)計圖回答下列問題:
(1)若第一季度的汽車銷售量為2100輛,求該季的汽車產量;
(2)圓圓同學說:“因為第二,第三這兩個季度汽車銷售數量占當季汽車產量是從75%降到50%,所以第二季度的汽車產量一定高于第三季度的汽車產量”,你覺得圓圓說的對嗎?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一艘海輪在A點時測得燈塔C在它的北偏東42°方向上,它沿正東方向航行80海里后到達B處,此時燈塔C在它的北偏西55°方向上.
(1)求海輪在航行過程中與燈塔C的最短距離(結果精確到0.1);
(2)求海輪在B處時與燈塔C的距離(結果保留整數).
(參考數據:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點P從點O出發(fā),按逆時針方向沿周長為l的圖形運動一周,O,P兩點間的距離y與點P走過的路程x的函數關系如圖,那么點P所走的圖形是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】【問題情境】
課外興趣小組活動時,老師提出了如下問題:
如圖①,△ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.
小明在組內經過合作交流,得到了如下的解決方法:延長AD至點E,使DE=AD,連接BE.請根據小明的方法思考:
(1)由已知和作圖能得到△ADC≌△EDB,依據是 .
A.SSS B.SAS C.AAS D.HL
(2)由“三角形的三邊關系”可求得AD的取值范圍是 .
解后反思:題目中出現“中點”、“中線”等條件,可考慮延長中線構造全等三角形,把分散的已知條件和所求證的結論集中到同一個三角形之中.
【初步運用】
如圖②,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求線段BF的長.
【靈活運用】
如圖③,在△ABC中, ∠A=90°,D為BC中點, DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF.試猜想線段BE、CF、EF三者之間的等量關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班畢業(yè)聯歡會設計的即興表演節(jié)目的摸球游戲,游戲采用一個不透明的盒子,里面裝有五個分別標有數字1、2、3、4、5的乒乓球,這些球除數字外,其它完全相同,游戲規(guī)則是參加聯歡會的50名同學,每人將盒子乒乓球搖勻后閉上眼睛從中隨機一次摸出兩個球(每位同學必須且只能摸一次).若兩球上的數字之和是偶數就給大家即興表演一個節(jié)目;否則,下個同學接著做摸球游戲,依次進行.
(1)用列表法或畫樹狀圖法求參加聯歡會同學表演即興節(jié)目的概率;
(2)估計本次聯歡會上有多少個同學表演即興節(jié)目.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某縣為了了解初中生對安全知識掌握情況,抽取了50名初中生進行安全知識測試,并將測試成績進行統(tǒng)計分析,繪制成了頻數分布表和頻數分布直方圖(未完成). 安全知識測試成績頻數分布表
組別 | 成績x(分數) | 組中值 | 頻數(人數) |
1 | 90≤x<100 | 95 | 10 |
2 | 80≤x<90 | 85 | 25 |
3 | 70≤x<80 | 75 | 12 |
4 | 60≤x<70 | 65 | 3 |
(1)完成頻數分布直方圖;
(2)這個樣本數據的中位數在第組;
(3)若將各組的組中值視為該組的平均成績,則此次測試的平均成績?yōu)?/span>;
(4)若將90分以上(含90分)定為“優(yōu)秀”等級,則該縣10000名初中生中,獲“優(yōu)秀”等級的學生約為人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,在△ABC中,∠A=90°,AB=AC,點D為BC的中點.
(1)如圖①,若點E、F分別為AB、AC上的點,且DE⊥DF,求證:BE=AF;
(2)若點E、F分別為AB、CA延長線上的點,且DE⊥DF,那么BE=AF嗎?請利用圖②說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com