【題目】某縣為了了解初中生對(duì)安全知識(shí)掌握情況,抽取了50名初中生進(jìn)行安全知識(shí)測(cè)試,并將測(cè)試成績(jī)進(jìn)行統(tǒng)計(jì)分析,繪制成了頻數(shù)分布表和頻數(shù)分布直方圖(未完成). 安全知識(shí)測(cè)試成績(jī)頻數(shù)分布表
組別 | 成績(jī)x(分?jǐn)?shù)) | 組中值 | 頻數(shù)(人數(shù)) |
1 | 90≤x<100 | 95 | 10 |
2 | 80≤x<90 | 85 | 25 |
3 | 70≤x<80 | 75 | 12 |
4 | 60≤x<70 | 65 | 3 |
(1)完成頻數(shù)分布直方圖;
(2)這個(gè)樣本數(shù)據(jù)的中位數(shù)在第組;
(3)若將各組的組中值視為該組的平均成績(jī),則此次測(cè)試的平均成績(jī)?yōu)?/span>;
(4)若將90分以上(含90分)定為“優(yōu)秀”等級(jí),則該縣10000名初中生中,獲“優(yōu)秀”等級(jí)的學(xué)生約為人.
【答案】
(1)解:完成圖形如下:
(2)2
(3)83.4
(4)2000
【解析】解:(2.)∵共50個(gè)人, ∴中位數(shù)應(yīng)該是第25和第26個(gè)數(shù)據(jù)的平均數(shù),
∵第25和第26個(gè)數(shù)據(jù)均落在第2小組,
∴中位數(shù)落在第2小組;
(3.)平均數(shù)= =83.4;
(4.)該縣10000名初中生中,獲“優(yōu)秀”等級(jí)的學(xué)生約為10000× =2000人,
所以答案是:2,83.4,2000.
【考點(diǎn)精析】本題主要考查了頻數(shù)分布直方圖的相關(guān)知識(shí)點(diǎn),需要掌握特點(diǎn):①易于顯示各組的頻數(shù)分布情況;②易于顯示各組的頻數(shù)差別.(注意區(qū)分條形統(tǒng)計(jì)圖與頻數(shù)分布直方圖)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀與理解:
折紙,常常能為證明一個(gè)命題提供思路和方法.例如,在△ABC中,AB>AC(如圖),怎樣證明∠C>∠B呢?
把AC沿∠A的角平分線AD翻折,因?yàn)?/span>AB>AC,所以點(diǎn)C落在AB上的點(diǎn)處,即,據(jù)以上操作,易證明≌,所以,又因?yàn)?/span>>∠B,所以∠C>∠B.
感悟與應(yīng)用:
(1)如圖(a),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,試判斷AC和AD、BC之間的數(shù)量關(guān)系,并說(shuō)明理由;
(2)如圖(b),在四邊形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,
① 求證:∠B+∠D=180°;
② 求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD是高,CE是中線,點(diǎn)G是CE的中點(diǎn),且DG⊥CE,垂足為點(diǎn)G.
(1)求證:DC=BE;
(2)若∠AEC=54°,求∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】⊙O的半徑為5,AB是⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)D在直線AB上.
(1)如圖(1),已知∠BCD=∠BAC,求證:CD是⊙O的切線;
(2)如圖(2),CD與⊙O交于另一點(diǎn)E.BD:DE:EC=2:3:5,求圓心O到直線CD的距離;
(3)若圖(2)中的點(diǎn)D是直線AB上的動(dòng)點(diǎn),點(diǎn)D在運(yùn)動(dòng)過(guò)程中,會(huì)出現(xiàn)C,D,E在三點(diǎn)中,其中一點(diǎn)是另外兩點(diǎn)連線的中點(diǎn)的情形,問(wèn)這樣的情況出現(xiàn)幾次?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,BA=BC,BE平分∠ABC,CD⊥BD,且CD=BD.
(1)求證:BF=AC;
(2)若AD=,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC=21,BC=13,D是AC邊上一點(diǎn),BD=12,AD=16,
(1)若E是邊AB的中點(diǎn),求線段DE的長(zhǎng)
(2)若E是邊AB上的動(dòng)點(diǎn),求線段DE的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為⊙O的內(nèi)接三角形,P為BC延長(zhǎng)線上一點(diǎn),∠PAC=∠B,AD為⊙O的直徑,過(guò)C作CG⊥AD交AD于E,交AB于F,交⊙O于G.
(1)判斷直線PA與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)求證:AG2=AFAB;
(3)若⊙O的直徑為10,AC=2 ,AB=4 ,求△AFG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC,點(diǎn)D在AB的延長(zhǎng)線上.
(1)利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫(xiě)作法). ①作∠CBD的平分線BM;
②作邊BC上的中線AE,并延長(zhǎng)AE交BM于點(diǎn)F.
(2)由(1)得:BF與邊AC的位置關(guān)系是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com