【題目】點(diǎn)P從點(diǎn)O出發(fā),按逆時(shí)針方向沿周長為l的圖形運(yùn)動(dòng)一周,O,P兩點(diǎn)間的距離y與點(diǎn)P走過的路程x的函數(shù)關(guān)系如圖,那么點(diǎn)P所走的圖形是( )
A.
B.
C.
D.
【答案】D
【解析】解:觀察函數(shù)的運(yùn)動(dòng)圖象,可以發(fā)現(xiàn)兩個(gè)顯著特點(diǎn):
點(diǎn)P運(yùn)動(dòng)到周長的一半( )時(shí),OP最大;
②點(diǎn)P的運(yùn)動(dòng)圖象是拋物線.
設(shè)點(diǎn)M為周長的一半,如下圖所示:
由圖可知,
圖1中,OM≤OP,不符合條件①,因此排除選項(xiàng)A;
圖3中,OM≤OP,不符合條件①,因此排除選項(xiàng)C.
另外,在圖2中,當(dāng)點(diǎn)P在線段OA上運(yùn)動(dòng)時(shí),y=x,其圖象是一條線段,不符合條件②,因此排除選項(xiàng)B.
故選D.
【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)的圖象,掌握函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對(duì)對(duì)應(yīng)值,他的橫坐標(biāo)x表示自變量的某個(gè)值,縱坐標(biāo)y表示與它對(duì)應(yīng)的函數(shù)值即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果兩個(gè)三角形的兩條邊和其中一邊上的高對(duì)應(yīng)相等,那么這兩個(gè)三角形的第三邊所對(duì)的角的關(guān)系是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的⊙O與弦CD相交于點(diǎn)E,且AC=2,AE= ,CE=1.則 的長是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中BA=BC,點(diǎn)D是AB延長線上一點(diǎn),DF⊥AC于F交BC于E,
求證:△DBE是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB,BC,CD分別與⊙O相切于E,F(xiàn),G.且AB∥CD.BO=6cm,CO=8cm.
(1)求證:BO⊥CO;
(2)求BE和CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是高,CE是中線,點(diǎn)G是CE的中點(diǎn),且DG⊥CE,垂足為點(diǎn)G.
(1)求證:DC=BE;
(2)若∠AEC=54°,求∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在對(duì)全市初中生的體質(zhì)健康測試中,青少年體質(zhì)研究中心隨機(jī)抽取的10名女生的立定跳遠(yuǎn)的成績(單位:厘米)如下:123,191,216,191,159,206,191,210,186,227.
(1)通過計(jì)算,樣本數(shù)據(jù)(10名女生的成績)的平均數(shù)是190厘米,中位數(shù)是多少厘米?眾數(shù)是多少厘米?
(2)本市一初中女生的成績是194厘米,你認(rèn)為她的成績?nèi)绾?說明理由;
(3)研究中心分別確定了一個(gè)標(biāo)準(zhǔn)成績,等于或大于這個(gè)成績的女學(xué)生該項(xiàng)素質(zhì)分別被評(píng)定為“合格”、“優(yōu)秀”等級(jí),其中合格的標(biāo)準(zhǔn)為大多數(shù)女生能達(dá)到,“優(yōu)秀”的標(biāo)準(zhǔn)為全市有一半左右的學(xué)生能夠達(dá)到,你認(rèn)為標(biāo)準(zhǔn)成績分別定為多少?說明理由;按擬定的合格標(biāo)準(zhǔn),估計(jì)該市4650人中有多少人在合格以上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BA=BC,BE平分∠ABC,CD⊥BD,且CD=BD.
(1)求證:BF=AC;
(2)若AD=,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC=5,AB=6,將它沿AB翻折得到△ABD,點(diǎn)P、E、F分別為線段AB、AD、DB的任意點(diǎn),則PE+PF的最小值是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com