【題目】如圖,在菱形中,點的坐標為,對角線相交于點.雙曲線經過點,交的延長線于點,則過點的雙曲線表達式為()
A. B. C. D.
【答案】D
【解析】
過點C作CF⊥x軸于點F,由A點坐標可得菱形的邊長,利用菱形面積可求出CF的長,由勾股定理可求出OF的長,即可得出C點坐標,進而可求出AC中點D的坐標,代入雙曲線解析式可得k的值,根據(jù)CF的長可得E點縱坐標,代入雙曲線解析式即可求出E點的橫坐標,即可得答案.
過點C作CF⊥x軸于點F,
∵OBAC=160,A點的坐標為(10,0),
∴S菱形OABC=OACF=OBAC=×160=80,菱形OABC的邊長為10,
∴CF=8,
在Rt△OCF中,
∵OC=10,CF=8,
∴OF===6,
∴C(6,8),
∵點D是線段AC的中點,
∴D點坐標為(,),即(8,4),
∵雙曲線y=(x>0)經過D點,
∴4=,即k=32,
∴雙曲線的解析式為:y=(x>0),
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】拋物線:與軸交于兩點(在的左側),與軸交于點.
(1)求拋物線的解析式及兩點的坐標;
(2)求拋物線的頂點坐標;
(3)將拋物線向上平移3個單位長度,再向右平移個單位長度,得到拋物線.①若拋物線的頂點在內,求的取值范圍;②若拋物線與線段只有一個交點,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,航拍無人機從A處測得一幢建筑物頂部B的仰角為45°,測得底部C的俯角為60°,此時航拍無人機與該建筑物的水平距離AD為110m,那么該建筑物的高度BC約為_____m(結果保留整數(shù),≈1.73).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市用1200元購進一批甲玩具,用800元購進一批乙玩具,所購甲玩具件數(shù)是乙玩具件數(shù)的,已知甲玩具的進貨單價比乙玩具的進貨單價多1元.
(1)求:甲、乙玩具的進貨單價各是多少元?
(2)玩具售完后,超市決定再次購進甲、乙玩具(甲、乙玩具的進貨單價不變),購進乙玩具的件數(shù)比甲玩具件數(shù)的2倍多60件,求:該超市用不超過2100元最多可以采購甲玩具多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為2的菱形中,,是邊的中點,若線段繞點旋轉得線段,
(Ⅰ)如圖①,線段的長__________.
(Ⅱ)如圖②,連接,則長度的最小值是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有大小兩種貨車,輛大貨車與輛小火車一次可以運貨噸,輛大貨車與輛小貨車一次可以運貨噸.
(1)求輛大貨車和輛小貨車一次可以分別運多少噸;
(2)現(xiàn)有噸貨物需要運輸,貨運公司擬安排大小貨車共輛把全部貨物一次運完.求至少需要安排幾輛大貨車?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(6分)在一個不透明的口袋裝有三個完全相同的小球,分別標號為1、2、3.求下列事件的概率:
(1)從中任取一球,小球上的數(shù)字為偶數(shù);
(2)從中任取一球,記下數(shù)字作為點A的橫坐標x,把小球放回袋中,再從中任取一球記下數(shù)字作為點A的縱坐標y,點A(x,y)在函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知y關于x的函數(shù)表達式是,下列結論不正確的是( )
A.若,函數(shù)的最大值是5
B.若,當時,y隨x的增大而增大
C.無論a為何值時,函數(shù)圖象一定經過點
D.無論a為何值時,函數(shù)圖象與x軸都有兩個交點
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系xOy中的圖形P和直線AB,給出如下定義:M為圖形P上任意一點,N為直線AB上任意一點,如果M,N兩點間的距離有最小值,那么稱這個最小值為圖形P和直線AB之間的“確定距離”,記作d(P,直線AB).
已知A(2,0),B(0,2).
(1)求d(點O,直線AB);
(2)⊙T的圓心為半徑為1,若d(⊙T,直線AB)≤1,直接寫出t的取值范圍;
(3)記函數(shù)的圖象為圖形Q.若d(Q,直線AB)=1,直接寫出k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com