【題目】如圖,在菱形中,點的坐標為,對角線相交于點.雙曲線經過點,交的延長線于點,則過點的雙曲線表達式為()

A. B. C. D.

【答案】D

【解析】

過點CCFx軸于點F,由A點坐標可得菱形的邊長,利用菱形面積可求出CF的長,由勾股定理可求出OF的長,即可得出C點坐標,進而可求出AC中點D的坐標,代入雙曲線解析式可得k的值,根據(jù)CF的長可得E點縱坐標,代入雙曲線解析式即可求出E點的橫坐標,即可得答案.

過點CCFx軸于點F,

OBAC160A點的坐標為(10,0),

S菱形OABC=OACFOBAC×16080,菱形OABC的邊長為10,

CF8

RtOCF中,

OC10,CF8,

OF6

C6,8),

∵點D是線段AC的中點,

D點坐標為(,),即(8,4),

∵雙曲線yx0)經過D點,

4,即k32

∴雙曲線的解析式為:yx0),

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線軸交于兩點(的左側),與軸交于點

1)求拋物線的解析式及兩點的坐標;

2)求拋物線的頂點坐標;

3)將拋物線向上平移3個單位長度,再向右平移個單位長度,得到拋物線.①若拋物線的頂點在內,求的取值范圍;②若拋物線與線段只有一個交點,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,航拍無人機從A處測得一幢建筑物頂部B的仰角為45°,測得底部C的俯角為60°,此時航拍無人機與該建筑物的水平距離AD為110m,那么該建筑物的高度BC約為_____m(結果保留整數(shù),≈1.73).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市用1200元購進一批甲玩具,用800元購進一批乙玩具,所購甲玩具件數(shù)是乙玩具件數(shù)的,已知甲玩具的進貨單價比乙玩具的進貨單價多1元.

1)求:甲、乙玩具的進貨單價各是多少元?

2)玩具售完后,超市決定再次購進甲、乙玩具(甲、乙玩具的進貨單價不變),購進乙玩具的件數(shù)比甲玩具件數(shù)的2倍多60件,求:該超市用不超過2100元最多可以采購甲玩具多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為2的菱形中,,邊的中點,若線段繞點旋轉得線段,

(Ⅰ)如圖①,線段的長__________

(Ⅱ)如圖②,連接,則長度的最小值是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有大小兩種貨車,輛大貨車與輛小火車一次可以運貨噸,輛大貨車與輛小貨車一次可以運貨噸.

(1)求輛大貨車和輛小貨車一次可以分別運多少噸;

(2)現(xiàn)有噸貨物需要運輸,貨運公司擬安排大小貨車共輛把全部貨物一次運完.求至少需要安排幾輛大貨車?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】6分)在一個不透明的口袋裝有三個完全相同的小球,分別標號為1、2、3.求下列事件的概率:

1)從中任取一球,小球上的數(shù)字為偶數(shù);

2)從中任取一球,記下數(shù)字作為點A的橫坐標x,把小球放回袋中,再從中任取一球記下數(shù)字作為點A的縱坐標y,點Ax,y)在函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知y關于x的函數(shù)表達式是,下列結論不正確的是(

A.,函數(shù)的最大值是5

B.,當時,yx的增大而增大

C.無論a為何值時,函數(shù)圖象一定經過點

D.無論a為何值時,函數(shù)圖象與x軸都有兩個交點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系xOy中的圖形P和直線AB,給出如下定義:M為圖形P上任意一點,N為直線AB上任意一點,如果M,N兩點間的距離有最小值,那么稱這個最小值為圖形P和直線AB之間的確定距離,記作dP,直線AB).

已知A(20),B(02)

1)求d(點O,直線AB);

2)⊙T的圓心為半徑為1,若d(T,直線AB)≤1,直接寫出t的取值范圍;

3)記函數(shù)的圖象為圖形Q.若d(Q,直線AB)=1,直接寫出k的值.

查看答案和解析>>

同步練習冊答案