【題目】如圖所示,是等腰直角三角形,,ADBC邊上的中線,過CAD的垂線,交AB于點(diǎn)E,交AD于點(diǎn)O,求證:.

【答案】詳見解析

【解析】

∠ADC和∠BDE所在的三角形肯定不全等,那么本題需要作輔助線.△ABC是等腰直角三角形,常用的輔助線是作三線里面的一線.可發(fā)現(xiàn)要證全等,已包含兩個(gè)條件需利用全等得到另一邊對應(yīng)相等.

證明:如圖: CHABHADP

∵在RtABC中,AC=CB,∠ACB=90°,

∴∠CAB=CBA=45°.

∴∠HCB=90°-CBA=45°=CBA=45°.

又∵BC中點(diǎn)為D,

CD=BD.

CHAB

CH=AH=BH.

又∵∠PAH+APH=90°,∠PCO+CPO=90°,∠APH=CPO

∴∠PAH=ECH,

在△APH與△CEH中有:

PAH=ECH,AH=CH,∠PHA=EHC,

∴△APH≌△CEHASA.

PH=EH,

PC=CH-PH,BE=BH-HE

CP=EB.

∵△ACB是等腰直角三角形,

∴∠B=45°,即∠EBD=45°,CHAB,

∴∠PCD=45°=EBD,

在△PDC與△EDB中有:

PC=EB,∠PCD=EBD,DC=DB,

∴△PDC≌△EDBSAS.

∴∠ADC=EDB.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)小明在一次高爾夫球的練習(xí)中,在點(diǎn)O處擊球,其飛行路線滿足拋物線,其中ym)是球的飛行高度, m)是球飛出的水平距離,結(jié)果球離球洞的水平距離還有2m

1)求拋物線的頂點(diǎn)坐標(biāo)及球飛行的最大水平距離;

2)若小明第二次仍從點(diǎn)O處擊球,球飛行的最大高度不變且剛好進(jìn)洞,求球飛行的拋物線路線滿足的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)PQ分別是邊長為4cm的等邊三角形ABC的邊AB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s

1)連接AQ、CP交于點(diǎn)M,則在P,Q運(yùn)動(dòng)的過程中,證明

2會(huì)發(fā)生變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);

3P、Q運(yùn)動(dòng)幾秒時(shí),是直角三角形?

4)如圖2,若點(diǎn)PQ在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則變化嗎?若變化說明理由,若不變,則求出它的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校準(zhǔn)備添置一批計(jì)算機(jī).

方案1:到商家直接購買,每臺(tái)需要7000元;

方案2:學(xué)校買零部件組裝,每臺(tái)需要6000元,另外需要支付安裝工工資等其它費(fèi)用合計(jì)3000元.設(shè)學(xué)校需要計(jì)算機(jī)x臺(tái),方案1與方案2的費(fèi)用分別為元.

分別寫出、的函數(shù)關(guān)系式;

當(dāng)學(xué)校添置多少臺(tái)計(jì)算機(jī)時(shí),兩種方案的費(fèi)用相同?

采用哪一種方案較省錢?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)某地有兩個(gè)村莊M,N,和兩條相交叉的公路OA,OB,現(xiàn)計(jì)劃修建一個(gè)物資倉庫,希望倉庫到兩個(gè)村莊的距離相等,到兩條公路的距離也相等,請你確定該點(diǎn).

(2)如圖,△ABC繞點(diǎn)C旋轉(zhuǎn)后,頂點(diǎn)A旋轉(zhuǎn)到了點(diǎn)D

①指出這一旋轉(zhuǎn)的旋轉(zhuǎn)角;

②畫出旋轉(zhuǎn)后的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題:①若,則;②直角三角形的兩個(gè)銳角互余:③如果,那么個(gè)角都是直角的四邊形是正方形.其中,原命題和逆命題均為真命題的有(

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于、的方程組.

1)求方程組的解(用含的代數(shù)式表示);

2)若方程組的解滿足為非正數(shù),為負(fù)數(shù),求的取值范圍:

3)在(2)的條件下,當(dāng)為何整數(shù)時(shí),不等式的解集為?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為DE,ADBE相交于點(diǎn)F

1)求證:△ACD∽△BFD

2)當(dāng)tan∠ABD=1,AC=3時(shí),求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)民收了400多個(gè)橙子(不到500個(gè)),把這些橙子20個(gè)裝一盒或者12個(gè)裝一盒,都是多5個(gè),這個(gè)農(nóng)民一共收了______個(gè)橙子.

查看答案和解析>>

同步練習(xí)冊答案